
STL - Principles and Practice

Victor Ciura - Technical Lead, Advanced Installer
Gabriel Diaconița - Senior Software Developer, Advanced Installer

http://www.advancedinstaller.com
CAPHYON

Agenda
Part 0: STL Intro. Part 1: Containers and Iterators

Part 2: STL Function Objects and Utilities Part 3-4: STL Algorithms Principles and Practice

Part 0:
STL Introduction

STL Short History

● Early on (‘70s) Stepanov recognized the full potential for generic

programming (first implementations in Ada)

● In 1990, Alex Stepanov and Meng Lee of Hewlett Packard Laboratories

extended C++ with a library of class and function templates which has come

to be known as the Standard Template Library.

● This brilliant work was recognized by Andrew Koenig who led efforts for its

introduction to the ISO C++ committee for standardization.

● Documentation and implementation work was completed with the help of

David Musser.

● In 1994, STL was adopted as part of ANSI/ISO Standard C++.

● STL adoption was helped by HP's decision to make its implementation

(Stepanov) freely available on the Internet (1994).

STL and Its Design Principles
Generic Programming

● algorithms are associated with a set of common properties

 Eg. op { +, *, min, max } => associative operations => reorder operands

 => parallelize + reduction (std::accumulate)

● find the most general representation of algorithms (abstraction)

● exists a generic algorithm behind every WHILE or FOR loop

Alexander Stepanov (2002), https://www.youtube.com/watch?v=COuHLky7E2Q

STL and Its Design Principles
Generic Programming

● specify correct and complete interfaces

 (eg. binary search should return the insertion point)

● look for interface symmetry (eg. stable_sort, stable_partition)

● Iterators are good (addresses are real in the machine)

 => ability to refer data through some handle

● Iterators should have fast comparison and dereferencing

● the STL library should be (easily) extended with other algorithms & data structures

Alexander Stepanov (2002), https://www.youtube.com/watch?v=COuHLky7E2Q

STL Data Structures

● they implement whole-part semantics (copy is deep - members)

● 2 objects never intersect (they are separate entities)

● 2 objects have separate lifetimes

● STL algorithms work only with Regular data structures

● Semiregular = Assignable + Constructible (both Copy and Move operations)

● Regular = Semiregular + EqualityComparable

● => STL assumes equality is always defined (at least, equivalence relation)

Paul
McJones

Generic Programming Drawbacks

● abstraction penalty

● implementation in the interface

● early binding

● horrible error messages (no formal specification of interfaces, yet)

● duck typing

● algorithm could work on some data types, but fail to work/compile on some other

new data structures (different iterator category, no copy semantics, etc)

We need to fully specify requirements on algorithm types => Concepts

Part 1:
Containers and Iterators

Containers

● STL offers an assortment of containers (of different types).

● STL publicizes the time and storage complexity of its containers (Big-O notation).

● STL containers grow and shrink in size automatically.

● STL provides built-in algorithms for processing containers.

● STL is extensible which means that users can add new containers and new algorithms such that:

○ STL algorithms can process STL containers as well as user-defined containers

○ User-defined algorithms can process STL containers as well user-defined containers

● STL provides iterators that make the containers and algorithms generic and efficient.

Containers

● The containers are class templates.

● When you declare a container, you specify the type of the elements that the container will hold.

● Containers can be constructed with initializer lists.

● They have member functions for adding, removing, accessing elements and other common operations.

● The container manages the storage space that is allocated for its elements (they even support custom

memory allocators).

● Access to elements is always performed via iterators.

● Most containers have at least several member functions in common, and share functionalities.

● Choosing the best container for the particular task depends not only on the offered functionality, but also

on its efficiency for different workloads.

Container Categories

● Sequence containers
○ array
○ vector
○ list, forward_list
○ deque

● Associative containers
○ set, multiset
○ map, multimap

● Unordered associative containers (hashed key)
○ unordered_set, unordered_multiset
○ unordered_map, unordered_multimap

● Container adapters
○ stack
○ queue
○ priority_queue

Sequence Containers

● Sequence containers maintain the ordering of inserted elements that you specify.

● A vector container behaves like an array, but can automatically grow as required.

● An array container has some of the strengths of vector, but the length is not

flexible.

● A list container is a doubly linked list that enables bidirectional access, fast

insertions, and fast deletions anywhere in the container, but you cannot randomly

access an element in the container.

● A forward_list container is a singly linked list - the forward-access version of list.

● A deque container allows for fast insertions and deletions at the beginning and

end of the container.

Associative Containers

● In associative containers, elements are inserted/kept in a pre-defined order.

● A map, sometimes referred to as a dictionary, consists of key/value pairs.

● A set is just an ordered container of unique elements - the value is also the key.

● Both map and set only allow one instance of a key or element to be inserted into

the container (for multiple instances, use multiset and multimap).

● Allow for retrieval of values by key in logarithmic time.

Unordered Associative Containers

● They use hash tables for fast retrieval and insertion.

● Container keys are hashed on insertion.

 (a custom hasher must be provided for user-defined key types).

● STL automatically provides predefined hash functions for builtin types.

 (integers, chars, std::string, pointers, etc.)

● In hashed containers, elements are inserted/kept in buckets.

● Allow for very fast retrieval of values by key (in constant time).

Containers Adapters

● A container adapter is a variation of a sequence or associative container that restricts the interface for

simplicity and clarity (very specialized).

● Container adapters do not support iterators.

● A queue container follows FIFO (first in, first out) semantics. push() pop() front() back()

● A stack container follows LIFO (last in, first out) semantics. push() pop() top()

● A priority_queue container is organized such that the element that has the highest value (according to a

specified predicate) is always first in the queue. push() pop() top()

● They are usually implemented (internally) with deque, list or vector.

Containers
vector<T>

● Similar to a C-array
● A back insertion sequence container (elements are arranged in order of insertion)
● Provides random access iterator
● Provides constant amortized complexity for push_back()
● Various constructors:

○ empty constructor: vector<int> v;
○ with a specific size: vector<int> v(10);
○ copy constructor: vector<int> v(other);
○ initializer list: vector<int> v = { 5, 8, 13, 0, 6 };

● Working with vector size:
○ get current size: v.size();
○ resize vector and add new elements: v.resize(100,42);
○ erase elements: v.erase(v.begin(), v.begin()+5);
○ clear all elements: v.clear();

Containers
vector<T>

● Get iterators for start and end positions: v.begin(); v.end();
● Get reverse iterators for start and end: v.rbegin(); v.rend();
● Adding at the end: v.push_back(42);
● Inserting at a specific position: v.insert(v.begin()+5, 42);

std::for_each(v.begin(), v.end(), [](const auto & val) { cout << val; });

for(auto it = v.begin(), end = v.end(); it != end; ++it) { cout << *it; }

for(auto it = v.begin(); it != v.end(); ++it) { cout << *it; }

for(vector<string>::iterator it = v.begin(); it != v.end(); ++it) { cout << *it; }

for(const auto & val : v) { cout << val; }

for(size_t i = 0; i < v.size(); ++i) { cout << v[i]; }

Containers
list<T>

● A doubly linked list.

● Back insertion sequence (supports both forward and backward operations).

● Various constructors.

● Similar methods like vector<T>

● Adding at the beginning: list.push_front(42);

● Get reference to the first element: list.front();

● Splice the elements of two lists: list1.splice(list1.end(), list2);

● Merge elements of two lists: list1.merge(list2);

● Sort a list: list.sort();

● Make unique elements: list.unique();

● Remove all elements matching a specific criteria: list.remove_if(Predicate());

http://homepages.e3.net.nz/~djm/cppcontainers.html
STL Containers Cheat Sheet

SAMPLE: C style array vs std::vector

Scenario: We need to store a non-fixed number of integer values. << Classic approach >>

int * numberArray = new int[currentNumberRoom];

int currentNumberRoom = 5; // number of numbers we can store, it will grow as needed

int lastAddedIndex = -1; // array index of last added number

void addNumber(int number)

{

 if (lastAddedIndex < currentNumberRoom - 1)

 {

 numberArray[++lastAddedIndex] = number; // enough room, just add number

 }

 else // no room, array must grow

 {

 int * moreNumberRoom = new int[currentNumberRoom * 2]; // double the available room

 memcpy(moreNumberRoom, numberArray, currentNumberRoom * sizeof(int)); // copy old numbers in new array

 currentNumberRoom = currentNumberRoom * 2; // we can store twice the numbers now

 numberArray = moreNumberRoom; // put new numbers in place of old array

 addNumber(nmber); // now we can do the insertion

 }

}

.........

int at47 = numberArray[47];

Can you spot any issues with
this code?

Should call delete[] on old array after
memcpy, we have a memory leak!

Possible buffer overflow!
Array may have less than 48 elements

Typo. No harm done, compiler will
catch this

SAMPLE: C style array vs std::vector

 Scenario: We need to store a non-fixed number of integer values. << C++ STL approach >>

Can you spot any issues with
this code?

std::vector<int> numberVector;

numberVector.reserve(5);

void addNumber(int number)

{

 numberVector.push_back(number);

}

.........

int at47 = numberVector.at(47);

✓● Quicker to write
● Easier to read
● Highly resilient to bugs
● No performance loss
● Code is generic

Will throw std::out_of_range exception
in case of overflow

Iterators

● Iterators are the mechanism that makes it possible to decouple algorithms from containers.

● Algorithms are template functions parameterized by the type of iterator, so they are not restricted

to a single type of container.

● An iterator represents an abstraction for a memory address (pointer).

● An iterator is an object that can iterate over elements in an STL container or range.

● All containers provide iterators so that algorithms can access their elements in a standard way.

Iterators

● You can use iterator operators such as ++ and -- to move forward or backward in a range.

● Iterators have different properties and behavior, depending on their category (iterator traits).

● Instead of being defined by specific types, each category of iterator is defined by the operations

that can be performed on it.

● There are five kinds of iterators: InputIterator, OutputIterator, ForwardIterator,

BidirectionalIterator, RandomAccessIterator.

Eg.

A pointer supports all of the operations required by RandomAccessIterator, so a pointer can be

used anywhere a RandomAccessIterator is expected.

Iterator Categories

Iterators

STL Ranges

● STL ranges are always semi-open intervals: [b, e)

● Get the beginning of a range/container: v.begin(); or begin(v);

● You can get a reference to the first element in the range by: *v.begin();

● You cannot dereference the iterator returned by: v.end(); or end(v);

SAMPLE: C style iteration vs STL Iterators

Scenario: Refactor existing code so that is prints numbers in reverse order << C approach >>

vector<int> numbers = { 1, 549, 3, 52, 6 };

for (unsigned int n = 0; n < numbers.size(); ++n)

 cout << numbers[n] << " ";

vector<int> numbers = { 1, 549, 3, 52, 6 };

for (unsigned int i= numbers.size(); i>= 0; ++i)

 cout << numbers[n] << " ";

Output: 1 549 3 52 6

Output: ???

Can you spot any issues with
this code?

Code will execute forever! We just need
the decrement operator

Old code forgotten during refactoring.
Compiler will catch this

...or do we?

SAMPLE: C style iteration vs STL Iterators

Scenario: Refactor existing code so that is prints numbers in reverse order << STL Iterator approach >>

vector<int> numbers = { 1, 549, 3, 52, 6 };

for (auto i = numbers.begin(), endIt = numbers.end(); i != endIt; ++i)

 cout << *it << " ";

vector<int> numbers = { 1, 549, 3, 52, 6 };

for (auto it = numbers.rbegin(), endIt = numbers.rend(); i != endIt; ++it)

 cout << *it << " ";

Output: 1 549 3 52 6

Output: 6 52 3 549 1

Can you spot any issues with
this code?

Old code forgotten during refactoring.
Compiler will catch this

SAMPLE: C style iteration vs STL Iterators

Scenario: Refactor existing code so that is prints numbers in reverse order << C++11 range-for approach >>

vector<int> numbers = { 1, 549, 3, 52, 6 };

for (auto i : numbers)

 cout << i << " ";

vector<int> numbers = { 1, 549, 3, 52, 6 };

for (auto i : reverse(numbers))

 cout << i << " ";

Output: 1 549 3 52 6

Output: 6 52 3 549 1

Can you spot any issues with
this code?✓ reverse() is an iterator adapter, which

will be introduced shortly

Iterator Adaptors

An iterator adapter that helps iterate a collection in reverse order

Eg.

 std::vector<int> values;

C style:
 for (int i = values.size() - 1; i >= 0; --i)
 cout << values[i] << endl;

STL+Lambdas:
 for_each(values.rbegin()), values.rend(),
 [](const string & val) { cout << val << endl; });

Range-for, using adapter:
 for (auto & val : reverse(values)) { cout << val << endl; }

Iterator Adaptors

An iterator adapter that helps iterate a collection in reverse order

namespace detail
{
 template <typename T>
 struct reversion_wrapper
 {
 T & mContainer;
 };
}
/**
 * Helper function that constructs
 * the appropriate iterator type based on ADL.
 */
template <typename T>
detail::reversion_wrapper<T> reverse(T && aContainer)
{
 return { aContainer };
}

Iterator Adaptors

An iterator adapter that helps iterate a collection in reverse order

namespace std
{
 template <typename T>
 auto begin(detail::reversion_wrapper<T> aRwrapper)
 {
 return rbegin(aRwrapper.mContainer);
 }

 template <typename T>
 auto end(detail::reversion_wrapper<T> aRwrapper)
 {
 return rend(aRwrapper.mContainer);
 }
}

Iterator Adaptors

An iterator adapter, that helps iterate through a container's value_type pair SECOND value

Eg.

 std::map<int, string> m;

 for_each(MakeSecondIterator(m.begin()), MakeSecondIterator(m.end()),
 [](const string & val) { cout << val << endl; });

 for (auto & v : IterateSecond(m)) { cout << val << endl; }

Iterator Adaptors

An iterator adapter, that helps iterate through a container's value_type pair SECOND value

template <typename Iter>
class MapSecondIterator : public std::iterator<std::bidirectional_iterator_tag,
 typename Iter::value_type::second_type>
{
public:
 MapSecondIterator() {}
 MapSecondIterator(Iter aOther) : i(aOther) {}

 inline MapSecondIterator & operator++() {...}
 inline MapSecondIterator operator++(int) {...}
 inline MapSecondIterator & operator--() {...}
 inline MapSecondIterator operator--(int) {...}

 inline bool operator==(MapSecondIterator aOther) const {...}
 inline bool operator!=(MapSecondIterator aOther) const {...}

 inline reference operator*() { return i->second; }
 inline pointer operator->() { return &i->second; }

private:
 Iter i;
};

Iterator Adaptors

An iterator adapter, that helps iterate through a container's value_type pair SECOND value

/**
 * Helper function that constructs
 * the appropriate iterator type based on ADL.
 */
template <typename Iter>
inline MapSecondIterator<Iter> MakeSecondIterator(Iter aIter)
{
 return MapSecondIterator<Iter>(aIter);
}

Eg.

 std::map<int, string> m;

 for_each(MakeSecondIterator(m.begin()), MakeSecondIterator(m.end()),
 [](const string & val) { cout << val << endl; });

Iterator Adaptors

An iterator adapter, that helps iterate through a container's value_type pair SECOND value

namespace detail {
 template <typename T>
 struct IterateSecondWrapper
 {
 T & mContainer;
 };
}

namespace std {

 template <typename T>
 auto begin(detail::IterateSecondWrapper<T> aWrapper)
 {
 return MakeSecondIterator(begin(aWrapper.mContainer));
 }

 template <typename T>
 auto end(detail::IterateSecondWrapper<T> aWrapper)
 {
 return MakeSecondIterator(end(aWrapper.mContainer));
 }
}

Iterator Adaptors

An iterator adapter, that helps iterate through a container's value_type pair SECOND value

/**
 * Helper function that constructs
 * the appropriate iterator type based on ADL.
 */
template<typename T>
detail::IterateSecondWrapper<T> IterateSecond(T && aContainer)
{
 return { aContainer };
}

Eg.

 std::map<int, string> m;

 for (auto & v : IterateSecond(m)) { cout << val << endl; }

