
STL - Principles and Practice

Victor Ciura - Technical Lead, Advanced Installer
Gabriel Diaconița - Senior Software Developer, Advanced Installer

http://www.advancedinstaller.com
CAPHYON

Agenda
Part 0: STL Intro. Part 1: Containers and Iterators

Part 2: STL Function Objects and Utilities Part 3-4: STL Algorithms Principles and Practice

Part 3:
STL Algorithms - Principles and Practice

“Prefer algorithm calls to hand-written loops.” - Scott Meyers, "Effective STL"

Why prefer to reuse (STL) algorithms?

Correctness

 Fewer opportunities to write bugs (less code => less bugs) like:
● iterator invalidation
● copy/paste bugs
● iterator range bugs
● loop continuations or early loop breaks
● guaranteeing loop invariants
● issues with algorithm logic

Code is a liability: maintenance, people, knowledge, dependencies, sharing, etc.

More code => more bugs, more test units, more maintenance, more documentation

Why prefer to reuse (STL) algorithms?

Code Clarity

● Algorithm names say what they do.

● Raw “for” loops don’t (without reading/understanding the whole body).

● We get to program at a higher level of abstraction by using well-known verbs

 (find, sort, remove, count, transform).

● A piece of code is read many more times than it’s modified.

● Maintenance of a piece of code is greatly helped if all future programmers

understand (with confidence) what that code does.

Why prefer to reuse (STL) algorithms?

Modern C++ (C++11/14 standards)

● Modern C++ adds more useful algorithms to the STL library.
● Makes existing algorithms much easier to use due to simplified language syntax

and lambda functions (closures).

std::for_each(v.begin(), v.end(), [](const auto & val) { … });

for(auto it = v.begin(), end = v.end(); it != end; ++it) { … }

for(auto it = v.begin(); it != v.end(); ++it) { … }

for(vector<string>::iterator it = v.begin(); it != v.end(); ++it) { … }

for(const auto & val : v) { … }

Why prefer to reuse (STL) algorithms?

Performance / Efficiency

● Vendor implementations are highly tuned (most of the times).

● Avoid some unnecessary temporary copies (leverage move operations for objects).

● Function helpers and functors are inlined away (no abstraction penalty).

● Compiler optimizers can do a better job without worrying about pointer aliasing (auto-

vectorization, auto-parallelization, loop unrolling, dependency checking, etc.).

The difference between Efficiency and Performance

 Why do we care ?

 Because: “Software is getting slower more rapidly than hardware becomes faster.”

“A Plea for Lean Software” - Niklaus Wirth

Efficiency and performance are not dependant on one another.

Efficiency Performance

the amount of work you need to do how fast you can do that work

governed by your algorithm governed by your data structures

Optimization

Optimization strategy:

1. Identification: profile the application and identify the worst performing parts.

2. Comprehension: understand what the code is trying to achieve and why it is slow.

3. Iteration: change the code based on step 2 and then re-profile; repeat until fast enough.

Very often, code becomes a bottleneck for one of four reasons:

● It’s being called too often.

● It’s a bad choice of algorithm: O(n^2) vs O(n), for example.

● It’s doing unnecessary work or it is doing necessary work too frequently.

● The data is bad: either too much data or the layout and access patterns are bad.

Generic Programming Drawbacks

● abstraction penalty

● implementation in the interface

● early binding

● horrible error messages (no formal specification of interfaces, yet)

● duck typing

● algorithm could work on some data types, but fail to work/compile on some other

new data structures (different iterator category, no copy semantics, etc)

We need to fully specify requirements on algorithm types => Concepts

Recap

What Is A Concept, Anyway ?

Formal specification of concepts makes it possible to verify that template arguments satisfy the
expectations of a template or function during overload resolution and template specialization.

Examples from STL:

- DefaultConstructible, MoveConstructible, CopyConstructible
- MoveAssignable, CopyAssignable,
- Destructible
- EqualityComparable, LessThanComparable
- Predicate, BinaryPredicate
- Compare
- FunctionObject
- Container, SequenceContainer, ContiguousContainer, AssociativeContainer
- Iterator

- InputIterator, OutputIterator
- ForwardIterator, BidirectionalIterator, RandomAccessIterator

http://en.cppreference.com/w/cpp/concept

Template Constraints Using C++17 Concepts

An example: Balanced reduction

template<ForwardIterator I, BinaryOperation Op>
 requires EqualityComparable<ValueType<I>, Domain<Op> >()
Domain<Op> reduce(I it, DistanceType<I> n, Op op)
// precondition: n != 0, "op" is associative
{
 if (n == 1)
 return *it;

 DistanceType<I> h = n / 2;

 return op(reduce(it, h, op),
 reduce(it + h, n - h, op));
}

*** For a better/efficient implementation of a generic reduce, see the longer (complex) implementation from
Elements of Programming, by Alexander Stepanov.

Compare Concept

Why is this one special ?
Because ~50 STL facilities (algorithms & data structures) expect a Compare type.

template< class RandomIt, class Compare >
void sort(RandomIt first, RandomIt last, Compare comp);

Concept relations:
Compare << BinaryPredicate << Predicate << FunctionObject << Callable

A type satisfies Compare if:
- it satisfies BinaryPredicate bool comp(*iter1, *iter2);
- it establishes a strict weak ordering relationship

Irreflexivity ∀ a, comp(a,a)==false

Antisymmetry ∀ a, b, if comp(a,b)==true => comp(b,a)==false

Transitivity ∀ a, b, c, if comp(a,b)==true and comp(b,c)==true => comp(a,c)==true

{ partial ordering }

Compare Examples

vector<string> v = { ... };

sort(v.begin(), v.end());

sort(v.begin(), v.end(), less<>());

sort(v.begin(), v.end(), [](const string & s1, const string & s2)
{
 return s1 < s2;
});

sort(v.begin(), v.end(), [](const string & s1, const string & s2)
{
 return stricmp(s1.c_str(), s2.c_str()) < 0;
});

Compare Examples

struct Point { int x; int y; };
vector<Point> v = { ... };

sort(v.begin(), v.end(), [](const Point & p1, const Point & p2)
{
 return (p1.x < p2.x) && (p1.y < p2.y);
});

Is this a good Compare predicate for 2D points ?

Compare Examples

Definition:
if comp(a,b)==false && comp(b,a)==false
=> a and b are equivalent

=>

P2 and P1 are unordered (P2 ?P1) comp(P2,P1)==false && comp(P1,P2)==false
P1 and P3 are unordered (P1 ?P3) comp(P1,P3)==false && comp(P3,P1)==false
P2 and P3 are ordered (P2 <P3) comp(P2,P3)==true && comp(P3,P2)==false

=>
P2 is equivalent to P1
P1 is equivalent to P3
P2 is less than P3

Let { P1, P2, P3 }
x1 < x2; y1 > y2;
x1 < x3; y1 > y3;
x2 < x3; y2 < y3;

Irreflexivity ∀ a, comp(a,a)==false

Antisymmetry ∀ a, b, if comp(a,b)==true => comp(b,a)==false

Transitivity ∀ a, b, c, if comp(a,b)=true and comp(b,c)==true => comp(a,c)==true

Transitivity of
equivalence

if a is equivalent to b and b is equivalent to c => a is equivalent to c

Compare Concept

Partial ordering relationship: Irreflexivity + Antisymmetry + Transitivity

Strict weak ordering relationship: Partial ordering + Transitivity of Equivalence

Total ordering relationship: Strict weak ordering + equivalence must be the same as equality

Compare Examples

struct Point { int x; int y; };
vector<Point> v = { ... };

sort(v.begin(), v.end(), [](const Point & p1, const Point & p2)
{
 return (p1.x * p1.x + p1.y * p1.y) <
 (p2.x * p2.x + p2.y * p2.y);
});

Is this a good Compare predicate for 2D points ?

Compare Examples

struct Point { int x; int y; };
vector<Point> v = { ... };

sort(v.begin(), v.end(), [](const Point & p1, const Point & p2)
{
 if (p1.x < p2.x) return true;
 if (p2.x < p1.x) return false;
 return p1.y < p2.y;
});

Is this a good Compare predicate for 2D points ?

Compare Examples

The general idea is to pick an order in which to compare elements/parts of the object.
(in our example we first compared by x coordinate, and then by y coordinate for equivalent x)

This strategy is analogous to how a dictionary works, so it is often called "dictionary order", or
“lexicographical order”.

The STL implements dictionary ordering in at least three places:

std::pair<T, U> - defines the six comparison operators in terms of the corresponding operators
of the pair's components

std::tuple< ... Types> - generalization of pair

std::lexicographical_compare() algorithm
● Two ranges are compared element by element
● The first mismatching element defines which range is lexicographically less or greater than

the other
● ...

Prefer Member Functions To Similarly Named Algorithms

The following member functions are available for associative containers:
- .count()
- .find()
- .equal_range()
- .lower_bound() // only for ordered containers
- .upper_bound() // only for ordered containers

The following member functions are available for list containers:
- .remove() .remove_if()
- .unique()
- .sort()
- .merge()
- .reverse()

These member functions are always faster than their similarly named generic algorithms.

Why? They can leverage the implementation details of the underlying data structure.

Prefer Member Functions To Similarly Named Algorithms

set<string> s = {...}; // 1 million elements

// worst case: 40 comparisons, average: 20 comparisons
auto it = s.find(“stl”);
if (it != s.end()) {...}

// worst case: 1 million comparisons, average: ½ million comparisons
auto it = std::find(s.begin(), s.end(), “stl”);
if (it != s.end()) {...}

Why ?

Prefer Member Functions To Similarly Named Algorithms

std::list<> specific algorithms

std::sort() doesn’t work on lists (Why ?)
=> call .sort() member function

.remove() and .remove_if() don’t need to use the erase/remove idiom.
They directly remove matching elements from the list.

.remove() and .remove_if() are more efficient than the generic algorithms,
because they just relink nodes with the need to copy or move elements.

Binary search operations (on sorted ranges)

binary_search() // helper (incomplete interface - Why ?)

lower_bound() // returns an iter to the first element not less than the given value

upper_bound() // returns an iter to the first element greater than the certain value

equal_range() = { lower_bound(), upper_bound() }

// properly checking return value

auto it = lower_bound(v.begin(), v.end(), 5);
if (it != v.end() && (*it == 5))
{

 // found item, do something with it

}

else // not found, insert item at the correct position

{

 v.insert(it, 5);
}

Binary search operations (on sorted ranges)

Counting elements equal to a given value

vector<string> v = { … }; // sorted collection
size_t num_items = std::count(v.begin(), v.end(), “stl”);

Instead of using std::count() generic algorithm, use binary search instead.

auto range = std::equal_range(v.begin(), v.end(), “stl”);
size_t num_items = std::distance(range.first, range.second);

Extend STL With Your Generic Algorithms

Eg.

template<class Container, class Value>
void name_this_algorithm(Container & c, const Value & v)
{
 if (find(begin(c), end(c), v) == end(c))
 c.emplace_back(v);
 assert(!c.empty());
}

Extend STL With Your Generic Algorithms

Eg.

template<class Container, class Value>
bool erase_if_exists(Container & c,
 const Value & v)
{
 auto found = std::find(begin(c), end(c), v);
 if (found != end(v))
 {
 c.erase(found); // call 'erase' from STL container
 return true;
 }
 return false;
}

Consider Adding Range-based Versions of STL Algorithms

namespace range {

 template< class InputRange, class T > inline
 typename auto find(InputRange && range, const T & value)
 {
 return std::find(begin(range), end(range), value);
 }

 template< class InputRange, class UnaryPredicate > inline
 typename auto find_if(InputRange && range, UnaryPredicate pred)
 {
 return std::find_if(begin(range), end(range), pred);
 }

 template< class RandomAccessRange, class BinaryPredicate > inline
 void sort(RandomAccessRange && range, BinaryPredicate comp)
 {
 std::sort(begin(range), end(range), comp);
 }

}

Consider Adding Range-based Versions of STL Algorithms

 vector<string> v = { … };

 auto it = range::find(v, "stl");
 string str = *it;

 auto chIt = range::find(str, 't');

 auto it2 = range::find_if(v, [](const auto & val) { return val.size() > 5; });

 range::sort(v);

 range::sort(v, [](const auto & val1, const auto & val2)
 { return val1.size() < val2.size(); });

STL Abuse

 vector<int> vec = { ... };
 int x = 3;
 int y = 9;

 vec.erase(
 remove_if(
 find_if(vec.rbegin(), vec.rend(),
 bind2nd(greater_equal<int>(), y)).base(),
 vec.end(),
 bind2nd(less<int>(), x)),
 vec.end());

Please don’t code like this !

Extract algorithm intermediate results into named local variables
(iterators, values, etc.)

