
STL Algorithms - Principles and Practice

Victor Ciura - Technical Lead, Advanced Installer
Gabriel Diaconița - Senior Software Developer, Advanced Installer

http://www.advancedinstaller.com
CAPHYON

December 2016

Agenda
Part 0: STL Background Part 1: Containers and Iterators

Part 4: STL Function Objects and UtilitiesPart 2-3: STL Algorithms Principles and Practice

STL Background
(recap prerequisites)

STL and Its Design Principles
Generic Programming

● algorithms are associated with a set of common properties

 Eg. op { +, *, min, max } => associative operations => reorder operands

 => parallelize + reduction (std::accumulate)

● find the most general representation of algorithms (abstraction)

● exists a generic algorithm behind every WHILE or FOR loop

● natural extension of 4,000 years of mathematics
Alexander Stepanov (2002),

 https://www.youtube.com/watch?v=COuHLky7E2Q

STL and Its Design Principles
Generic Programming

● Egyptian multiplication ~ 1900-1650 BC
● Ancient Greek number theory
● Prime numbers
● Euclid’s GCD algorithm
● Abstraction in mathematics
● Deriving generic algorithms
● Algebraic structures
● Programming concepts
● Permutation algorithms
● Cryptology (RSA) ~ 1977 AD

STL Data Structures

● they implement whole-part semantics (copy is deep - members)

● 2 objects never intersect (they are separate entities)

● 2 objects have separate lifetimes

● STL algorithms work only with Regular data structures

● Semiregular = Assignable + Constructible (both Copy and Move operations)

● Regular = Semiregular + EqualityComparable

● => STL assumes equality is always defined (at least, equivalence relation)

STL Iterators

● Iterators are the mechanism that makes it possible to decouple algorithms from containers.

● Algorithms are template functions parameterized by the type of iterator, so they are not restricted

to a single type of container.

● An iterator represents an abstraction for a memory address (pointer).

● An iterator is an object that can iterate over elements in an STL container or range.

● All containers provide iterators so that algorithms can access their elements in a standard way.

STL Iterators
Ranges

● STL ranges are always semi-open intervals: [b, e)

● Get the beginning of a range/container: v.begin(); or begin(v);

● You can get a reference to the first element in the range by: *v.begin();

● You cannot dereference the iterator returned by: v.end(); or end(v);

SAMPLE: C style iteration vs STL Iterators

Scenario: Refactor existing code so that is prints numbers in reverse order << C approach >>

vector<int> numbers = { 1, 549, 3, 52, 6 };

for (unsigned int n = 0; n < numbers.size(); ++n)

 cout << numbers[n] << " ";

vector<int> numbers = { 1, 549, 3, 52, 6 };

for (unsigned int i= numbers.size(); i>= 0; ++i)

 cout << numbers[n] << " ";

Output: 1 549 3 52 6

Output: ???

Can you spot any issues with
this code?

Code will execute forever! We just need
the decrement operator

Old code forgotten during refactoring.
Compiler will catch this

...or do we?

SAMPLE: C style iteration vs STL Iterators

Scenario: Refactor existing code so that is prints numbers in reverse order << STL Iterator approach >>

vector<int> numbers = { 1, 549, 3, 52, 6 };

for (auto i = numbers.begin(), endIt = numbers.end(); i != endIt; ++i)

 cout << *it << " ";

vector<int> numbers = { 1, 549, 3, 52, 6 };

for (auto it = numbers.rbegin(), endIt = numbers.rend(); i != endIt; ++it)

 cout << *it << " ";

Output: 1 549 3 52 6

Output: 6 52 3 549 1

Can you spot any issues with
this code?

Old code forgotten during refactoring.
Compiler will catch this

SAMPLE: C style iteration vs STL Iterators

Scenario: Refactor existing code so that is prints numbers in reverse order << C++11 range-for approach >>

vector<int> numbers = { 1, 549, 3, 52, 6 };

for (auto i : numbers)

 cout << i << " ";

vector<int> numbers = { 1, 549, 3, 52, 6 };

for (auto i : reverse(numbers))

 cout << i << " ";

Output: 1 549 3 52 6

Output: 6 52 3 549 1

Can you spot any issues with
this code?✓ reverse() is an iterator adapter, which

will be introduced shortly

Iterator Adaptors

Iterate a collection in reverse order

 std::vector<int> values;

C style:

 for (int i = values.size() - 1; i >= 0; --i)
 cout << values[i] << endl;

STL + Lambdas:

 for_each(values.rbegin()), values.rend(),
 [](const string & val) { cout << val << endl; });

Range-for, using adapter:

 for (auto & val : reverse(values)) { cout << val << endl; }

Iterator Adaptors

Iterate a collection in reverse order

namespace detail
{
 template <typename T>
 struct reversion_wrapper
 {
 T & mContainer;
 };
}
/**
 * Helper function that constructs
 * the appropriate iterator type based on ADL.
 */
template <typename T>
detail::reversion_wrapper<T> reverse(T && aContainer)
{
 return { aContainer };
}

Iterator Adaptors

Iterate a collection in reverse order

namespace std
{
 template <typename T>
 auto begin(detail::reversion_wrapper<T> aRwrapper)
 {
 return rbegin(aRwrapper.mContainer);
 }

 template <typename T>
 auto end(detail::reversion_wrapper<T> aRwrapper)
 {
 return rend(aRwrapper.mContainer);
 }
}

Iterator Adaptors

Iterate through an associative container keys or values

 std::map<int, string> m; // container value types are <key, value> pairs

 for (auto & key : IterateFirst(m)) { cout << key << endl; }

 for (auto & val : IterateSecond(m)) { cout << val << endl; }

 Homework for the reader:

 Using the same technique shown for reverse()iteration adaptor,
 implement IterateFirst() and IterateSecond() adaptors.

Function Objects Basics

template<class InputIt, class UnaryFunction>
void std::for_each(InputIt first, InputIt last, UnaryFunction func)
{
 for(; first != last; ++first)
 func(*first);
}

struct Printer // our custom functor for console output
{
 void operator()(const std::string & str)
 {
 std::cout << str << std::endl;
 }
};

std::vector<std::string> vec = { “STL”, “function”, “objects”, “rule” };

std::for_each(vec.begin(), vec.end(), Printer());

Lambda Functions

struct Printer // our custom functor for console output
{
 void operator()(const string & str)
 {
 cout << str << endl;
 }
};

std::vector<string> vec = { “STL”, “function”, “objects”, “rule” };

std::for_each(vec.begin(), vec.end(), Printer());

// using a lambda

std::for_each(vec.begin(), vec.end(),
 [](const string & str) { cout << str << endl; });

Lambda Functions

[capture-list] (params) mutable(optional) -> ret { body }

[capture-list] (params) -> ret { body }

[capture-list] (params) { body }

[capture-list] { body }

Capture list can be passed as follows :

■ [a, &b] where a is captured by value and b is captured by reference.

■ [this] captures the this pointer by value

■ [&] captures all automatic variables used in the body of the lambda by reference

■ [=] captures all automatic variables used in the body of the lambda by value

■ [] captures nothing

Anatomy of A Lambda

credit: Herb Sutter - “Lambdas, Lambdas Everywhere”
https://www.youtube.com/watch?v=rcgRY7sOA58

Anatomy of A Lambda

credit: Herb Sutter - “Lambdas, Lambdas Everywhere”
https://www.youtube.com/watch?v=rcgRY7sOA58

Anatomy of A Lambda

credit: Herb Sutter - “Lambdas, Lambdas Everywhere”
https://www.youtube.com/watch?v=rcgRY7sOA58

Lambda Functions

std::list<Person> members = {...};

unsigned int minAge = GetMinimumAge();

members.remove_if([minAge](const Person & p) { return p.age < minAge; });

// compiler generated code:

namespace {

struct Lambda_247

{

 Lambda_247(unsigned int age) : minAge(age) {}

 bool operator()(const Person & p) { return p.age < minAge; }

 unsigned int minAge;

}; }

members.remove_if(Lambda_247(minAge));

Prefer Function Objects or Lambdas to Free Functions

vector<int> v = { … };

bool GreaterInt(int i1, int i2) { return i1 > i2; }

sort(v.begin(), v.end(), GreaterInt); // pass function pointer

sort(v.begin(), v.end(), greater<>());

sort(v.begin(), v.end(), [](int i1, int i2) { return i1 > i2; });

Function Objects and Lambdas leverage operator() inlining
vs.

indirect function call through a function pointer

This is the main reason std::sort() outperforms qsort() from C-runtime by at least 500% in
typical scenarios, on large collections.

STL Algorithms - Principles and Practice

“Prefer algorithm calls to hand-written loops.” - Scott Meyers, "Effective STL"

Why prefer to reuse (STL) algorithms?

Correctness

 Fewer opportunities to write bugs (less code => less bugs) like:
● iterator invalidation
● copy/paste bugs
● iterator range bugs
● loop continuations or early loop breaks
● guaranteeing loop invariants
● issues with algorithm logic

Code is a liability: maintenance, people, knowledge, dependencies, sharing, etc.

More code => more bugs, more test units, more maintenance, more documentation

Why prefer to reuse (STL) algorithms?

Code Clarity

● Algorithm names say what they do.

● Raw “for” loops don’t (without reading/understanding the whole body).

● We get to program at a higher level of abstraction by using well-known verbs

 (find, sort, remove, count, transform).

● A piece of code is read many more times than it’s modified.

● Maintenance of a piece of code is greatly helped if all future programmers

understand (with confidence) what that code does.

Why prefer to reuse (STL) algorithms?

Modern C++ (C++11/14 standards)

● Modern C++ adds more useful algorithms to the STL library.
● Makes existing algorithms much easier to use due to simplified language syntax

and lambda functions (closures).

std::for_each(v.begin(), v.end(), [](const auto & val) { … });

for(auto it = v.begin(), end = v.end(); it != end; ++it) { … }

for(auto it = v.begin(); it != v.end(); ++it) { … }

for(vector<string>::iterator it = v.begin(); it != v.end(); ++it) { … }

for(const auto & val : v) { … }

Why prefer to reuse (STL) algorithms?

Performance / Efficiency

● Vendor implementations are highly tuned (most of the times).

● Avoid some unnecessary temporary copies (leverage move operations for objects).

● Function helpers and functors are inlined away (no abstraction penalty).

● Compiler optimizers can do a better job without worrying about pointer aliasing

(auto-vectorization, auto-parallelization, loop unrolling, dependency checking, etc.).

The difference between Efficiency and Performance

 Why do we care ?

 Because: “Software is getting slower more rapidly than hardware becomes faster.”

“A Plea for Lean Software” - Niklaus Wirth

Efficiency and performance are not dependant on one another.

Efficiency Performance

the amount of work you need to do how fast you can do that work

governed by your algorithm governed by your data structures

Optimization

Strategy:

1. Identification: profile the application and identify the worst performing parts.

2. Comprehension: understand what the code is trying to achieve and why it is slow.

3. Iteration: change the code based on step 2 and then re-profile; repeat until fast enough.

Very often, code becomes a bottleneck for one of four reasons:

● It’s being called too often.

● It’s a bad choice of algorithm: O(n^2) vs O(n), for example.

● It’s doing unnecessary work or it is doing necessary work too frequently.

● The data is bad: either too much data or the layout and access patterns are bad.

Competitive programming

Generic Programming Drawbacks

● abstraction penalty

● implementation in the interface

● early binding

● horrible error messages (no formal specification of interfaces, yet)

● duck typing

● algorithm could work on some data types, but fail to work/compile on some other

new data structures (different iterator category, no copy semantics, etc)

We need to fully specify requirements on algorithm types => Concepts

What Is A Concept, Anyway ?

Formal specification of concepts makes it possible to verify that template arguments satisfy the
expectations of a template or function during overload resolution and template specialization.

Examples from STL:

- DefaultConstructible, MoveConstructible, CopyConstructible
- MoveAssignable, CopyAssignable,
- Destructible
- EqualityComparable, LessThanComparable
- Predicate, BinaryPredicate
- Compare
- FunctionObject
- Container, SequenceContainer, ContiguousContainer, AssociativeContainer
- Iterator

- InputIterator, OutputIterator
- ForwardIterator, BidirectionalIterator, RandomAccessIterator

http://en.cppreference.com/w/cpp/concept

Compare Concept

Why is this one special ?
Because ~50 STL facilities (algorithms & data structures) expect a Compare type.

template< class RandomIt, class Compare >
void sort(RandomIt first, RandomIt last, Compare comp);

Concept relations:
Compare << BinaryPredicate << Predicate << FunctionObject << Callable

A type satisfies Compare if:
- it satisfies BinaryPredicate bool comp(*iter1, *iter2);
- it establishes a strict weak ordering relationship

Irreflexivity ∀ a, comp(a,a)==false

Antisymmetry ∀ a, b, if comp(a,b)==true => comp(b,a)==false

Transitivity ∀ a, b, c, if comp(a,b)==true and comp(b,c)==true => comp(a,c)==true

{ partial ordering }

Compare Examples

vector<string> v = { ... };

sort(v.begin(), v.end());

sort(v.begin(), v.end(), less<>());

sort(v.begin(), v.end(), [](const string & s1, const string & s2)
{
 return s1 < s2;
});

sort(v.begin(), v.end(), [](const string & s1, const string & s2)
{
 return stricmp(s1.c_str(), s2.c_str()) < 0;
});

Prefer Member Functions To Similarly Named Algorithms

The following member functions are available for associative containers:
- .count()
- .find()
- .equal_range()
- .lower_bound() // only for ordered containers
- .upper_bound() // only for ordered containers

The following member functions are available for list containers:
- .remove() .remove_if()
- .unique()
- .sort()
- .merge()
- .reverse()

These member functions are always faster than their similarly named generic algorithms.

Why? They can leverage the implementation details of the underlying data structure.

Prefer Member Functions To Similarly Named Algorithms

set<string> s = {...}; // 1 million elements

// worst case: 40 comparisons, average: 20 comparisons
auto it = s.find(“stl”);
if (it != s.end()) {...}

// worst case: 1 million comparisons, average: ½ million comparisons
auto it = std::find(s.begin(), s.end(), “stl”);
if (it != s.end()) {...}

Why ?

Prefer Member Functions To Similarly Named Algorithms

std::list<> specific algorithms

std::sort() doesn’t work on lists (Why ?)
=> call .sort() member function

.remove() and .remove_if() don’t need to use the erase/remove idiom.
They directly remove matching elements from the list.

.remove() and .remove_if() are more efficient than the generic algorithms,
because they just relink nodes with the need to copy or move elements.

Binary search operations (on sorted ranges)

binary_search() // helper (incomplete interface - Why ?)

lower_bound() // returns an iter to the first element not less than the given value

upper_bound() // returns an iter to the first element greater than the certain value

equal_range() = { lower_bound(), upper_bound() }

// properly checking return value

auto it = lower_bound(v.begin(), v.end(), 5);
if (it != v.end() && (*it == 5)) Why do we need to check the value we searched for ?
{

 // found item, do something with it

}

else // not found, insert item at the correct position

{

 v.insert(it, 5);
}

Binary search operations (on sorted ranges)

Counting elements equal to a given value

vector<string> v = { … }; // sorted collection
size_t num_items = std::count(v.begin(), v.end(), “stl”);

Instead of using std::count() generic algorithm, use binary search instead.

auto range = std::equal_range(v.begin(), v.end(), “stl”);
size_t num_items = std::distance(range.first, range.second);

Homework

We have a little game for you to refactor, using STL

Open with Visual Studio 2015

Search for #STL blocks

Refactor C-style #STL blocks using valid STL code

Is the snake still snakin’ & dyin’ right?

Email solutions at: gabriel.diaconita@caphyon.com

