
�12019 Victor Ciura | @ciura_victor

Welcome!

�22019 Victor Ciura | @ciura_victor

http://inf.ucv.ro/~summer-school/ https://www.caphyon.ro/open4tech-2019.html

Open4Tech Summer School 2019

Victor Ciura
Technical Lead, Caphyon
www.caphyon.ro

July, 2019
Craiova

Curry On
Functional Programming

@ciura_victor

http://www.caphyon.ro
https://twitter.com/ciura_victor

�X

Abstract
Can a language whose official motto is “Avoid Success at All Costs” teach us new tricks in modern
programming languages?

If Haskell is so great, why hasn't it taken over the world? My claim is that it has. But not as a Roman
legion loudly marching in a new territory, rather as distributed Trojan horses popping in at the gates,
masquerading as modern features or novel ideas in today’s mainstream languages. Functional
Programming ideas that have been around for over 40 years will be rediscovered to solve our current
software complexity problems.

Indeed, modern programming languages have become more functional. From mundane concepts like
lambdas & closures, function objects, values types and constants, to composability of algorithms,
ranges, folding, mapping or even higher-order functions.

In this workshop we’ll analyze a bunch of FP techniques and see how they help make our code shorter,
clearer and faster, by embracing a declarative vs. an imperative style. Brace yourselves for a bumpy ride
including composition, lifting, currying, partial application, pure functions, maybe even pattern matching
and lazy evaluation.

Spoiler: no unicorns here.

2019 Victor Ciura | @ciura_victor

Who Am I ?

@ciura_victor

�4

Advanced Installer Clang Power Tools

2019 Victor Ciura | @ciura_victor

https://twitter.com/ciura_victor
https://www.advancedinstaller.com
http://www.clangpowertools.com

�52019 Victor Ciura | @ciura_victor

Curry On
Functional Programming

What is it all about ?

🤔

�62019 Victor Ciura | @ciura_victor

Haskell

lambdas & closures

currying

composition

Maybe | Just

monads

std::optional

declarative vs imperative
algebraic data types

fold

STL

values types

higher order functions

ranges C++

monoids

FP

lifting

category theory

algorithms

map

expressions vs statements

partial application

pure functions

pattern matching

lazy evaluation

recursion

�72019 Victor Ciura | @ciura_victor

Paradox of Programming

https://www.youtube.com/watch?v=JH_Ou17_zyUA Crash Course in Category Theory - Bartosz Milewski

Machine/Human impedance mismatch:

Local/Global perspective

Progress/Goal oriented

Detail/Idea

Vast/Limited memory

Pretty reliable/Error prone

Machine language/Mathematics

Is it easier to think like a machine than to do math?

https://www.youtube.com/watch?v=JH_Ou17_zyU

�82019 Victor Ciura | @ciura_victor

Semantics

https://www.youtube.com/watch?v=JH_Ou17_zyUA Crash Course in Category Theory - Bartosz Milewski

The meaning of a program

Operational semantics: local, progress oriented

• Execute program on an abstract machine in your brain

Denotational semantics

• Translate program to math

Math: an ancient language developed for humans

https://www.youtube.com/watch?v=JH_Ou17_zyU

�92019 Victor Ciura | @ciura_victor

What is Functional Programming ?

• Functional programming is a style of programming in which the basic method of
computation is the application of functions to arguments

• A functional language is one that supports and encourages the functional style

�102019 Victor Ciura | @ciura_victor

Let's address the 🐘 in the room...

Haskell

�112019 Victor Ciura | @ciura_victor

https://www.amazon.com/Programming-Haskell-Graham-Hutton/dp/1316626229/

https://www.amazon.com/Programming-Haskell-Graham-Hutton/dp/1316626229/

�122019 Victor Ciura | @ciura_victor

A functional language is one that supports
and encourages the functional style

What do you mean ?

�132019 Victor Ciura | @ciura_victor

Summing the integers 1 to 10 in C++/Java/C#

int total = 0;
for (int i = 1; i ≤ 10; i++)
 total = total + i;

The computation method is variable assignment.

�142019 Victor Ciura | @ciura_victor

Summing the integers 1 to 10 in Haskell

sum [1..10]

The computation method is function application.

�152019 Victor Ciura | @ciura_victor

Sneak Peek Into Next Level QA (Test Automation) - Antonio Valent

�162019 Victor Ciura | @ciura_victor

Historical Background

�172019 Victor Ciura | @ciura_victor

Historical Background
Most of the "new" ideas and innovations in modern

programming languages are actually very old...

�182019 Victor Ciura | @ciura_victor

Historical Background
1930s

Alonzo Church develops the lambda calculus,
a simple but powerful theory of functions

�192019 Victor Ciura | @ciura_victor

Historical Background

John McCarthy develops Lisp, the first functional language, with some
influences from the lambda calculus, but retaining variable assignments

1950s

�202019 Victor Ciura | @ciura_victor

Historical Background

Peter Landin develops ISWIM, the first pure functional language,
based strongly on the lambda calculus, with no assignments

1960s

�212019 Victor Ciura | @ciura_victor

Historical Background

John Backus develops FP, a functional language that emphasizes
higher-order functions and reasoning about programs

1970s

�222019 Victor Ciura | @ciura_victor

Historical Background

Robin Milner and others develop ML, the first modern functional language,
which introduced type inference and polymorphic types

1970s

�232019 Victor Ciura | @ciura_victor

Historical Background

David Turner develops a number of lazy functional languages,
culminating in the Miranda system

1970-80s

�242019 Victor Ciura | @ciura_victor

Historical Background

An international committee starts the development of Haskell,
a standard lazy functional language

1987

�252019 Victor Ciura | @ciura_victor

Historical Background

Phil Wadler and others develop type classes and monads,
two of the main innovations of Haskell

1990s

�262019 Victor Ciura | @ciura_victor

Historical Background

The committee publishes the Haskell Report, defining a stable
version of the language; an updated version was published in 2010

2003
2010

�272019 Victor Ciura | @ciura_victor

Historical Background

2010-2019
standard distribution

library support

new language features

development tools

use in industry

influence on other languages

�282019 Victor Ciura | @ciura_victor

f [] = []
f (x:xs) = f ys ++ [x] ++ f zs
 where
 ys = [a | a ← xs, a ≤ x]
 zs = [b | b ← xs, b > x]

A Taste of Haskell

What does f do ?

�292019 Victor Ciura | @ciura_victor

Standard Prelude
Haskell comes with a large number of standard library functions

Select the first element of a list:
> head [1,2,3,4,5]
1

Remove the first element from a list:

> tail [1,2,3,4,5]
[2,3,4,5]

�302019 Victor Ciura | @ciura_victor

Standard Prelude

Select the nth element of a list:

> [1,2,3,4,5] !! 2
3

Select the first n elements of a list:

> take 3 [1,2,3,4,5]
[1,2,3]

�312019 Victor Ciura | @ciura_victor

Remove the first n elements from a list:
> drop 3 [1,2,3,4,5]
[4,5]

Calculate the length of a list:
> length [1,2,3,4,5]
5

Calculate the sum of a list of numbers:
> sum [1,2,3,4,5]
15

Standard Prelude

�322019 Victor Ciura | @ciura_victor

Standard Prelude
Calculate the product of a list of numbers:
> product [1,2,3,4,5]
120

Append two lists:
> [1,2,3] ++ [4,5]
[1,2,3,4,5]

Reverse a list:
> reverse [1,2,3,4,5]
[5,4,3,2,1]

�332019 Victor Ciura | @ciura_victor

Function Application
f a b + c*d

f applied to a and b

Function application is assumed to have higher priority than all other operators:

f a + b

means (f a) + b rather than f (a + b)

�342019 Victor Ciura | @ciura_victor

Mathematics Haskell

f(x)
f(x,y)
f(g(x))
f(x,g(y))
f(x) g(y)

f x
f x y
f (g x)
f x (g y)
f x * g y

Function Application

�352019 Victor Ciura | @ciura_victor

My First Function
double x = x + x

quadruple x = double (double x)

> quadruple 10
40

> take (double 2) [1,2,3,4,5,6]
[1,2,3,4]

�362019 Victor Ciura | @ciura_victor

average ns = sum ns `div` length ns

x `f` y is just syntactic sugar for f x y

Infix Functions

�372019 Victor Ciura | @ciura_victor

The Layout Rule

means

The layout rule avoids the need for explicit
syntax to indicate the grouping of definitions

a = b + c
 where
 b = 1
 c = 2
d = a * 2

a = b + c
 where

 {b = 1;
 c = 2}
 d = a * 2

implicit grouping explicit grouping

�382019 Victor Ciura | @ciura_victor

Types in Haskell
If evaluating an expression e would produce a value of type t,

then e has type t, written as e::t

Every well formed expression has a type, which can be automatically
calculated at compile time using a process called type inference

All type errors are found at compile time,
=> makes programs safer and faster by removing the need for type checks at run time

�392019 Victor Ciura | @ciura_victor

List Types
A list is sequence of values of the same type:

[False,True,False] :: [Bool]

[’a’,’b’,’c’,’d’] :: [Char]

[[’a’],[’b’,’c’]] :: [[Char]]

�402019 Victor Ciura | @ciura_victor

Tuple Types

(False,True) :: (Bool,Bool)

(False,’a’,True) :: (Bool,Char,Bool)

(’a’,(False,’b’)) :: (Char,(Bool,Char))

(True,[’a’,’b’]) :: (Bool,[Char])

�412019 Victor Ciura | @ciura_victor

Function Types
A function is a mapping from values of one type to values of

another type:

not :: Bool " Bool

even :: Int " Bool

�422019 Victor Ciura | @ciura_victor

Function Types

add :: (Int,Int) " Int
add (x,y) = x+y

zeroto :: Int " [Int]
zeroto n = [0..n]

�432019 Victor Ciura | @ciura_victor

Curried Functions
Functions with multiple arguments are also
possible by returning functions as results:

add’ :: Int " (Int " Int)
add’ x y = x+y

add’ takes an integer x and returns a function add’ x
In turn, this new function takes an integer y

and returns the result x+y

�442019 Victor Ciura | @ciura_victor

add and add’ produce the same final result,
but add takes its two arguments at the same time,

whereas add’ takes them one at a time:

Functions that take their arguments one at a time are called curried functions,
celebrating the work of Haskell Curry on such functions.

add :: (Int,Int) " Int

add’ :: Int " (Int " Int)

Curried Functions

�452019 Victor Ciura | @ciura_victor

Curried Functions
Functions with more than two arguments can

be curried by returning nested functions:

mult :: Int " (Int " (Int " Int))
mult x y z = x*y*z

mult takes an integer x and returns a function mult x, which in
turn takes an integer y and returns a function mult x y, which

finally takes an integer z and returns the result x*y*z

�462019 Victor Ciura | @ciura_victor

Curried Functions
Curried functions are more flexible than functions on tuples,

because useful functions can often be made
by partially applying a curried function.

add’ 1 :: Int " Int

take 5 :: [Int] " [Int]

drop 5 :: [Int] " [Int]

�472019 Victor Ciura | @ciura_victor

Currying Conventions
To avoid excess parentheses when using curried
functions, two simple conventions are adopted:

Int " Int " Int " Int

The arrow → associates to the right

same as: Int " (Int " (Int " Int))

�482019 Victor Ciura | @ciura_victor

As a consequence, it is then natural for
function application to associate to the left

Currying Conventions

mult x y z

means ((mult x) y) z

Unless tupling is explicitly required,
all functions in Haskell are normally defined in curried form

�492019 Victor Ciura | @ciura_victor

Polymorphic Functions
A function is called polymorphic if its type contains

one or more type variables

length :: [a] " Int

For any type a, length takes a list of
values of type a and returns an integer

�502019 Victor Ciura | @ciura_victor

Type variables can be instantiated to different
types in different circumstances:

Type variables must begin with a lower-case letter,
and are usually named a, b, c...

> length [False,True]
2

> length [1,2,3,4]
4

a = Bool

a = Int

Polymorphic Functions

�512019 Victor Ciura | @ciura_victor

Many of the functions defined in the standard prelude are polymorphic:

fst :: (a,b) " a

head :: [a] " a

take :: Int " [a] " [a]

zip :: [a] " [b] " [(a,b)]

id :: a " a

Polymorphic Functions

�522019 Victor Ciura | @ciura_victor

Guarded Equations
abs :: Int " Int
abs n = if n ≥ 0 then n else -n

As an alternative to conditionals,

functions can also be defined using guarded equations

abs n | n ≥ 0 = n
 | otherwise = -n

�532019 Victor Ciura | @ciura_victor

Guarded Equations
signum :: Int " Int
signum n = if n < 0 then -1 else
 if n == 0 then 0 else 1

Guarded equations can be used to make definitions involving multiple conditions easier to read:

The catch all condition otherwise is defined in the prelude by otherwise = True

signum n | n < 0 = -1
 | n == 0 = 0
 | otherwise = 1

�542019 Victor Ciura | @ciura_victor

Pattern Matching

not :: Bool " Bool
not False = True
not True = False

�552019 Victor Ciura | @ciura_victor

Pattern Matching
(&&) :: Bool " Bool " Bool
True && True = True
True && False = False
False && True = False
False && False = False

(&&) :: Bool " Bool " Bool
True && True = True
_ && _ = False

can be defined more compactly by:

underscore symbol _ is a wildcard pattern that matches any argument value

�562019 Victor Ciura | @ciura_victor

Pattern Matching

underscore symbol _ is a wildcard pattern that matches any argument value

(&&) :: Bool " Bool " Bool
True && b = b
False && _ = False

However, the following definition is more efficient,

because it avoids evaluating the second argument if the first argument is False

�572019 Victor Ciura | @ciura_victor

Pattern Matching

Patterns are matched in order.

The following definition always returns False:

_ && _ = False
True && True = True

�582019 Victor Ciura | @ciura_victor

List Patterns

Internally, every non-empty list is constructed by repeated use of an
operator (:) called “cons” that adds an element to the start of a list

[1,2,3,4]

means 1:(2:(3:(4:[])))

�592019 Victor Ciura | @ciura_victor

List Patterns (x:xs)

head :: [a] " a
head (x:_) = x

tail :: [a] " [a]
tail (_:xs) = xs

Functions on lists can be defined using x:xs patterns

x:xs patterns only match non-empty lists:

> head []
*** Exception: empty list

�602019 Victor Ciura | @ciura_victor

Lambda Expressions

λx " x + x

the nameless function that takes a number x
and returns the result x + x

\x " x + x

�612019 Victor Ciura | @ciura_victor

Lambda Expressions

odds n = map f [0..n-1]
 where
 f x = x*2 + 1

can be simplified to:

odds n = map (\x " x*2 + 1) [0..n-1]

Lambda expressions can be used to avoid naming functions that are only referenced once

�622019 Victor Ciura | @ciura_victor

Set Comprehensions

In mathematics, the comprehension notation can be used to construct new sets from old sets

{ x2 | x ∈ {1...5} }

the set {1,4,9,16,25} of all numbers x2 such that x is
an element of the set {1…5}

�632019 Victor Ciura | @ciura_victor

Set Comprehensions

In Haskell, a similar comprehension notation can be used to construct new lists from old lists

[x^2 | x ← [1..5]]

the set {1,4,9,16,25} of all numbers x2 such that x is
an element of the set {1…5}

�642019 Victor Ciura | @ciura_victor

Set Comprehensions

[x^2 | x ← [1..5]]

The expression x ← [1..5] is called a generator,

as it states how to generate values for x

Comprehensions can have multiple generators, separated by commas:

> [(x,y) | x ← [1,2,3], y ← [4,5]]

[(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]

�652019 Victor Ciura | @ciura_victor

Set Comprehensions
Changing the order of the generators changes the order of the elements in the final list:

> [(x,y) | y ← [4,5], x ← [1,2,3]]

[(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)]

Multiple generators are like nested loops, with later generators as more
deeply nested loops whose variables change value more frequently.

�662019 Victor Ciura | @ciura_victor

> [(x,y) | y ← [4,5], x ← [1,2,3]]

[(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)]

x ← [1,2,3] is the last generator, so the value of the x
component of each pair changes most frequently.

Set Comprehensions

�672019 Victor Ciura | @ciura_victor

Dependant Generators

Later generators can depend on the variables that are introduced by earlier generators

[(x,y) | x ← [1..3], y ← [x..3]]

The list [(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]
of all pairs of numbers (x,y) such that x,y are elements

of the list [1..3] and y ≥ x

�682019 Victor Ciura | @ciura_victor

Using a dependant generator we can define the library function that concatenates a list of lists:

concat :: [[a]] " [a]
concat xss = [x | xs ← xss, x ← xs]

> concat [[1,2,3],[4,5],[6]]

[1,2,3,4,5,6]

Dependant Generators

�692019 Victor Ciura | @ciura_victor

Guards

List comprehensions can use guards to restrict the values produced by earlier generators

[x | x ← [1..10], even x]

The list [2,4,6,8,10] of all numbers x such that
x is an element of the list [1..10] and x is even

�702019 Victor Ciura | @ciura_victor

Guards

factors :: Int " [Int]
factors n = [x | x ← [1..n], n `mod` x == 0]

> factors 15

[1,3,5,15]

Using a guard we can define a function that maps a positive integer to its list of factors:

�712019 Victor Ciura | @ciura_victor

Guards
A positive integer is prime if its only factors are 1 and itself.  

Using factors we can define a function that decides if a number is prime:

prime :: Int " Bool
prime n = factors n == [1,n]

> prime 15
False

> prime 7
True

�722019 Victor Ciura | @ciura_victor

Using a guard we can now define a function that returns the list of all primes up to a given limit:

primes :: Int " [Int]
primes n = [x | x ← [2..n], prime x]

> primes 40

[2,3,5,7,11,13,17,19,23,29,31,37]

Guards

�732019 Victor Ciura | @ciura_victor

Zip Function
A useful library function is zip, which maps two lists to a list of pairs of their corresponding elements

zip :: [a] " [b] " [(a,b)]

> zip [’a’,’b’,’c’] [1,2,3,4]

[(’a’,1),(’b’,2),(’c’,3)]

�742019 Victor Ciura | @ciura_victor

Using zip we can define a function returns the list of all pairs of adjacent elements from a list:

pairs :: [a] " [(a,a)]
pairs xs = zip xs (tail xs)

> pairs [1,2,3,4]

[(1,2),(2,3),(3,4)]

Zip Function

�752019 Victor Ciura | @ciura_victor

Using pairs we can define a function that decides if the elements in a list are sorted:

sorted :: Ord a ⇒ [a] " Bool
sorted xs = and [x ≤ y | (x,y) ← pairs xs]

> sorted [1,2,3,4]
True

> sorted [1,3,2,4]
False

Zip Function

�762019 Victor Ciura | @ciura_victor

String Comprehensions
A string is a sequence of characters enclosed in double quotes.

Internally, however, strings are represented as lists of characters.

"abc" :: String

means [’a’, ’b’, ’c’] :: [Char]

�772019 Victor Ciura | @ciura_victor

String Comprehensions
Because strings are just special kinds of lists,

any polymorphic function that operates on lists can also be applied to strings.

> length "abcde"
5

> take 3 "abcde"
"abc"

> zip "abc" [1,2,3,4]
[(’a’,1),(’b’,2),(’c’,3)]

�782019 Victor Ciura | @ciura_victor

String Comprehensions
List comprehensions can also be used to define functions on strings,

such counting how many times a character occurs in a string:

count :: Char " String " Int
count x xs = length [x’ | x’ ← xs, x == x’]

> count ’e’ "Open4Tech Summer School"
3

�792019 Victor Ciura | @ciura_victor

Recursive Functions

fac 0 = 1
fac n = n * fac (n-1)

fac 3
3 * fac 2
3 * (2 * fac 1)
3 * (2 * (1 * fac 0))
3 * (2 * (1 * 1))
3 * (2 * 1)

6
3 * 2

�802019 Victor Ciura | @ciura_victor

Recursive Functions

product :: Num a ⇒ [a] " a
product [] = 1
product (n:ns) = n * product ns

product [2,3,4]
2 * product [3,4]
2 * (3 * product [4])
2 * (3 * (4 * product []))
2 * (3 * (4 * 1))
24

�812019 Victor Ciura | @ciura_victor

length :: [a] " Int
length [] = 0
length (_:xs) = 1 + length xs

Recursive Functions

length [1,2,3]
1 + length [2,3]
1 + (1 + length [3])
1 + (1 + (1 + length []))
1 + (1 + (1 + 0))

3

�822019 Victor Ciura | @ciura_victor

reverse :: [a] " [a]
reverse [] = []
reverse (x:xs) = reverse xs ++ [x]

Recursive Functions

reverse [1,2,3]
reverse [2,3] ++ [1]
(reverse [3] ++ [2]) ++ [1]
((reverse [] ++ [3]) ++ [2]) ++ [1]
(([] ++ [3]) ++ [2]) ++ [1]
[3,2,1]

�832019 Victor Ciura | @ciura_victor

Recursive & Multiple Args

zip :: [a] " [b] " [(a,b)]
zip [] _ = []
zip _ [] = []
zip (x:xs) (y:ys) = (x,y) : zip xs ys

�842019 Victor Ciura | @ciura_victor

Recursive & Multiple Args

drop :: Int " [a] " [a]
drop 0 xs = xs
drop _ [] = []
drop n (_:xs) = drop (n-1) xs

�852019 Victor Ciura | @ciura_victor

Recursive & Multiple Args

(++) :: [a] " [a] " [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

�862019 Victor Ciura | @ciura_victor

Rules:

1. The empty list is already sorted.

2. Non-empty lists can be sorted by sorting the tail values ≤ the head, sorting the

tail values > the head, and then appending the resulting lists on either side of the

head value.

Quick Sort

�872019 Victor Ciura | @ciura_victor

Quick Sort

qsort :: Ord a ⇒ [a] " [a]
qsort [] = []
qsort (x:xs) =
 qsort smaller ++ [x] ++ qsort larger
 where
 smaller = [a | a ← xs, a ≤ x]
 larger = [b | b ← xs, b > x]

�882019 Victor Ciura | @ciura_victor

q [3,2,4,1,5]

q [2,1] ++ [3] ++ q [4,5]

q [1] q []++ [2] ++ q [] q [5]++ [4] ++

[1] [] [] [5]

Quick Sort

�892019 Victor Ciura | @ciura_victor

Higher-Order Functions
A function is called higher-order if it takes a function as

an argument or returns a function as a result.

twice :: (a " a) " a " a
twice f x = f (f x)

�902019 Victor Ciura | @ciura_victor

Common programming idioms can be encoded as functions within the language itself.

Domain specific languages can be defined as collections of higher-order functions.

Algebraic properties of higher-order functions can be used to reason about programs.

Higher-Order Functions

�912019 Victor Ciura | @ciura_victor

Higher-Order Functions

Give me examples from your favorite programming language/library

�922019 Victor Ciura | @ciura_victor

map :: (a " b) " [a] " [b]

> map (+1) [1,3,5,7]

[2,4,6,8]

Higher-Order Functions
Map

�932019 Victor Ciura | @ciura_victor

Map Function

Alternatively, the map function can also be defined using recursion:

The map function can be defined in a simple manner using a list comprehension:

map f xs = [f x | x ← xs]

map f [] = []
map f (x:xs) = f x : map f xs

�942019 Victor Ciura | @ciura_victor

Filter Function

The higher-order function filter selects every element from a list that satisfies a predicate

filter :: (a " Bool) " [a] " [a]

> filter even [1..10]

[2,4,6,8,10]

�952019 Victor Ciura | @ciura_victor

Alternatively, it can be defined using recursion:

Filter can be defined using a list comprehension:

filter p xs = [x | x ← xs, p x]

filter p [] = []
filter p (x:xs)
 | p x = x : filter p xs
 | otherwise = filter p xs

Filter Function

�962019 Victor Ciura | @ciura_victor

Foldr Function
A number of functions on lists can be defined using the following simple

pattern of recursion:

f [] = v
f (x:xs) = x ⊕ f xs

f maps the empty list to some value v, and any non-empty
list to some function ⊕ applied to its head and f of its tail

�972019 Victor Ciura | @ciura_victor

Foldr Function

sum [] = 0
sum (x:xs) = x + sum xs

and [] = True
and (x:xs) = x && and xs

product [] = 1
product (x:xs) = x * product xs

v = 0
⊕ = +

v = 1
⊕ = *

v = True
⊕ = &&

�982019 Victor Ciura | @ciura_victor

The higher-order library function foldr (fold right) encapsulates this simple
pattern of recursion, with the function ⊕ and the value v as arguments

sum = foldr (+) 0

product = foldr (*) 1

or = foldr (||) False

and = foldr (&&) True

Foldr Function

�992019 Victor Ciura | @ciura_victor

Foldr Function
It is best to think of foldr as simultaneously replacing each (:) in a list

by a given function, and [] by a given value

sum [1,2,3]
foldr (+) 0 [1,2,3]

=

foldr (+) 0 (1:(2:(3:[])))
=

1+(2+(3+0))
=

6
= replace each (:)

by (+) and [] by 0

�1002019 Victor Ciura | @ciura_victor

Foldr Function
It is best to think of foldr as simultaneously replacing each (:) in a list

by a given function, and [] by a given value

product [1,2,3]
foldr (*) 1 [1,2,3]

=

foldr (*) 1 (1:(2:(3:[])))
=

1*(2*(3*1))
=

6
= replace each (:)

by (*) and [] by 1

�1012019 Victor Ciura | @ciura_victor

Foldr Function

length :: [a] " Int
length [] = 0
length (_:xs) = 1 + length xs

length = foldr (\ _ n " 1+n) 0

�1022019 Victor Ciura | @ciura_victor

Foldr Function

reverse :: [a] " [a]
reverse [] = []
reverse (x:xs) = reverse xs ++ [x]

reverse = foldr (\x xs " xs ++ [x]) []

�1032019 Victor Ciura | @ciura_victor

Foldr Function

Some recursive functions on lists, such as sum, are simpler to define using foldr.

Properties of functions defined using foldr can be proved using algebraic properties of foldr

Advanced program optimizations can be simpler if foldr is used in place of explicit recursion

�1042019 Victor Ciura | @ciura_victor

Function Composition

The library function (.) returns the composition of two functions as a single function

(.) :: (b " c) " (a " b) " (a " c)
f . g = λx " f (g x)

Eg.

 filter::(a -> Bool) -> [a] -> [a]
 length::[a] -> Int
=>
 let e = length . filter (\x -> odd x) xs
 e::Int

�1052019 Victor Ciura | @ciura_victor

Functional Patterns in C++

�1062019 Victor Ciura | @ciura_victor

Problem:

Counting adjacent repeated values in a sequence.

How many of you solved this textbook exercise before ?

(in any programming language)

🙋$

�1072019 Victor Ciura | @ciura_victor

Counting adjacent repeated values in a sequence

Who wants to try it now ?

🙋$

C++

{ 5, 8, 8, 2, 1, 1, 9, 4, 4, 7 }

�1082019 Victor Ciura | @ciura_victor

Counting adjacent repeated values in a sequenceC++

{ 5, 8, 8, 2, 1, 1, 9, 4, 4, 7 }

{ 5, 8, 8, 2, 1, 1, 9, 4, 4, 7 }

{ 0, 1, 0, 0, 1, 0, 0, 1, 0 }

Visual hint:

(+) ➡ 3

(==)

�1092019 Victor Ciura | @ciura_victor

Counting adjacent repeated values in a sequenceC++

Let me guess... a bunch of for loops, right ?

How about something shorter ? 

An STL algorithm maybe ?

�1102019 Victor Ciura | @ciura_victor

template<class InputIt1, class InputIt2,
 class T,
 class BinaryOperation1, class BinaryOperation2>
T inner_product(InputIt1 first1, InputIt1 last1,
 InputIt2 first2, T init,
 BinaryOperation1 op1 // "sum" function
 BinaryOperation2 op2) // "product" function
{
 while (first1 != last1)
 {
 init = op1(init, op2(*first1, *first2));
 ++first1;
 ++first2;
 }
 return init;
}

Counting adjacent repeated values in a sequenceC++

https://en.cppreference.com/w/cpp/algorithm/inner_product

https://en.cppreference.com/w/cpp/algorithm/inner_product

�1112019 Victor Ciura | @ciura_victor

Counting adjacent repeated values in a sequenceC++

template <typename T>
int count_adj_equals(const T & xs) // requires non-empty range
{
 return std::inner_product( 
 std::cbegin(xs), std::cend(xs) - 1, // to penultimate elem  
 std::cbegin(xs) + 1, // collection tail  
 0,  
 std::plus{},  
 std::equal_to{}); // yields boolean => 0 or 1
}

�1122019 Victor Ciura | @ciura_victor

Counting adjacent repeated values in a sequenceC++

If you found that piece of code in a code-base,

would you understand what it does* ?❓
🙋$* without my cool diagram & animation

�1132019 Victor Ciura | @ciura_victor

Let's go back to Haskell for a few minutes...

Counting adjacent repeated values in a sequence

�1142019 Victor Ciura | @ciura_victor

Counting adjacent repeated values in a sequence

[5, 8, 8, 2, 1, 1, 9, 4, 4, 7]

[5, 8, 8, 2, 1, 1, 9, 4, 4, 7]

[-3, 0, 6, 1, 0, -8, 5, 0, -3]

Visual hint:

(==0) ➡ 3

(-)

�1152019 Victor Ciura | @ciura_victor

Counting adjacent repeated values in a sequence

let xs = [5, 8, 8, 2, 1, 1, 9, 4, 4, 7]

count_if f = length . filter f
adj_diff = mapAdjacent (-)
count_adj_equals = count_if (==0) . adj_diff

> count_adj_equals xs
3

That's it !

�1162019 Victor Ciura | @ciura_victor

Counting adjacent repeated values in a sequence
Let's break it down:

// C++
[](auto a, auto b) { return a + b; }
plus{}

[](auto e) ->bool { return e == 1; }

// Haskell
(\a b -> a + b)
(+)

(\e -> e == 1)
(==1)

Lambdas & sections

�1172019 Victor Ciura | @ciura_victor

Counting adjacent repeated values in a sequence
Let's break it down:

length::[a] -> Int
filter::(a->Bool) -> [a] -> [a]

=>

count_if::(a->Bool) -> [a] -> Int
count_if f = length . filter f

�1182019 Victor Ciura | @ciura_victor

Counting adjacent repeated values in a sequence
Let's break it down:

mapAdjacent::(a->a->b) -> [a] -> [b]
mapAdjacent _ [] = []
mapAdjacent f xs = zipWith f xs (tail xs)

(-)::a -> a -> a
adj_diff = mapAdjacent (-)

=>

adj_diff::[a] -> [a]

�1192019 Victor Ciura | @ciura_victor

(==0)::a -> Bool
count_if::(a->Bool) -> [a] -> Int
adj_diff::[a] -> [a]

Counting adjacent repeated values in a sequence
Let's break it down:

count_adj_equals::[a] -> Int
count_adj_equals = count_if (==0) . adj_diff

�1202019 Victor Ciura | @ciura_victor

let xs = [5, 8, 8, 2, 1, 1, 9, 4, 4, 7]

> let ds = adj_diff xs
[-3, 0, 6, 1, 0, -8, 5, 0, -3]

> count_if(==0) ds
3

Counting adjacent repeated values in a sequence
Let's break it down:

�1212019 Victor Ciura | @ciura_victor

Counting adjacent repeated values in a sequence

count_if f = length . filter f
adj_diff = mapAdjacent (-)
count_adj_equals = count_if (==0) . adj_diff

The algorithm

�1222019 Victor Ciura | @ciura_victor

Counting adjacent repeated values in a sequenceC++
Back to modern C++

template <typename T>
int count_adj_equals(const T & xs)
{
 return accumulate(0,
 zip(xs, tail(xs)) | transform(equal_to{}));
}

C++20 Ranges

�1232019 Victor Ciura | @ciura_victor

Homework

1986:

Donald Knuth was asked to implement a program for the ”Programming pearls” column in the
Communications of ACM journal.

The task:

Read a file of text, determine the n most frequently used words, and print out a sorted list of
those words along with their frequencies.

His solution written in Pascal was 10 pages long.

�1242019 Victor Ciura | @ciura_victor

Homework

Response by Doug McIlroy was a 6-line shell script that did the same:

 tr -cs A-Za-z '\n' |
 tr A-Z a-z |
 sort |
 uniq -c |
 sort -rn |
 sed ${1}q

�1252019 Victor Ciura | @ciura_victor

Homework

Taking inspiration from Doug McIlroy's UNIX shell script,

write a C++ or Haskell algorithm, that solves the same problem: word frequencies

�1262019 Victor Ciura | @ciura_victor

It's all about pipelines !

�1272019 Victor Ciura | @ciura_victor

C++ 20 Ranges
Print only the even elements of a range in reverse order:

std::for_each(
 std::crbegin(v), std::crend(v),
 [](auto const i) {
 if(is_even(i))
 cout << i;
 });

for (auto const i : v
 | rv::reverse
 | rv::filter(is_even))
{
 cout << i;
}

�1282019 Victor Ciura | @ciura_victor

C++ 20 Ranges
Skip the first 2 elements of the range and print only the even numbers of the next 3 in the range:

auto it = std::cbegin(v);
std::advance(it, 2);
auto ix = 0;
while (it != cend(v) && ix++ < 3)
{
 if (is_even(*it))
 cout << (*it);
 it++;
}

for (auto const i : v
 | rv::drop(2)
 | rv::take(3)
 | rv::filter(is_even))
{
 cout << i;
}

�1292019 Victor Ciura | @ciura_victor

C++ 20 Ranges
Modify an unsorted range so that it retains only the unique values but in reverse order.

vector<int> v{ 21, 1, 3, 8, 13, 1, 5, 2 };

std::sort(std::begin(v), std::end(v));

v.erase(
 std::unique(std::begin(v), std::end(v)),
 std::end(v));

std::reverse(std::begin(v), std::end(v));

vector<int> v{ 21, 1, 3, 8, 13,
1, 5, 2 };

v = std::move(v) |
 ra::sort |
 ra::unique |
 ra::reverse;

�1302019 Victor Ciura | @ciura_victor

C++ 20 Ranges
Create a range of strings containing the last 3 numbers divisible to 7 in the range [101, 200],

in reverse order.

vector<std::string> v;

for (int n = 200, count = 0;
 n >= 101 && count < 3; --n)
{
 if (n % 7 == 0)
 {
 v.push_back(to_string(n));
 count++;
 }
}

auto v = rs::iota_view(101, 201)
 | rv::reverse
 | rv::filter([](auto v) { return v%7==0; })
 | rv::transform(to_string)
 | rv::take(3)
 | rs::to_vector;

�1312019 Victor Ciura | @ciura_victor

Eric Niebler’s implementation of the Ranges library is available here:

https://github.com/ericniebler/range-v3

It works will Clang 3.6.2 or later, gcc 5.2 or later, and MSVC 15.9 or later.

C++ 20 Ranges
Until the new ISO standard lands in a compiler near you...

Although the standard namespace for the Ranges library is std::ranges,

in this current implementation of the library it is ranges::v3

namespace rs = ranges::v3;
namespace rv = ranges::v3::view;
namespace ra = ranges::v3::action;

https://github.com/ericniebler/range-v3

�1322019 Victor Ciura | @ciura_victor

Higher-Order Functions

https://www.youtube.com/watch?v=qL6zUn7iiLg

https://github.com/rollbear/lift

https://www.youtube.com/watch?v=qL6zUn7iiLg
https://github.com/rollbear/lift

�1332019 Victor Ciura | @ciura_victor

https://www.boost.org/doc/libs/develop/libs/hof/doc/html/doc/

Higher-Order Functions

boost::hof

https://www.boost.org/doc/libs/develop/libs/hof/doc/html/doc/

�1342019 Victor Ciura | @ciura_victor

Further Study
“Ranges for distributed and asynchronous systems”  
- Ivan Čukić [ACCU 2019]

https://www.youtube.com/watch?v=eelpmWo2fuU

“C++ Algorithms in Haskell and the Haskell Playground”  
- Conor Hoekstra [C++Now 2019]

https://www.youtube.com/watch?v=dTO3-1C1-t0

https://www.amazon.com/Functional-Programming-programs-functional-techniques/dp/1617293814

“Functional Programming in C++” - Ivan Čukić

https://www.youtube.com/watch?v=eelpmWo2fuU
https://www.youtube.com/watch?v=dTO3-1C1-t0
https://www.amazon.com/Functional-Programming-programs-functional-techniques/dp/1617293814

�1352019 Victor Ciura | @ciura_victor

Haskell

lambdas & closures

currying

composition

Maybe | Just

monads

std::optional

declarative vs imperative
algebraic data types

fold

STL

values types

higher order functions

ranges C++

monoids

FP

lifting

category theory

algorithms

map

expressions vs statements

partial application

pure functions

pattern matching

lazy evaluation

recursion

�1362019 Victor Ciura | @ciura_victor

Historical Background

Phil Wadler and others develop type classes and monads,
two of the main innovations of Haskell

1990s

�1372019 Victor Ciura | @ciura_victor

"Make your code readable.
Pretend the next person who looks at your
code is a psychopath and they know where
you live."

Phil Wadler

Takeaway

@ciura_victor

Curry On
Functional Programming

July, 2019
Craiova

Victor Ciura
Technical Lead, Caphyon
www.caphyon.ro

https://twitter.com/ciura_victor
http://www.caphyon.ro

