
STL Algorithms
Principles and Practice

Victor Ciura - Technical Lead
Gabriel Diaconița - Senior Software Developer

February 2019

Agenda
Part 0: STL Background Part 1: Containers and Iterators

Part 2: STL Function Objects and Utilities Part 3-4: STL Algorithms Principles and Practice

STL Background
(recap prerequisites)

STL and Its Design Principles
Generic Programming

● algorithms are associated with a set of common properties

 Eg. op { +, *, min, max } => associative operations => reorder operands

 => parallelize + reduction (std::accumulate)

● find the most general representation of algorithms (abstraction)

● exists a generic algorithm behind every WHILE or FOR loop

● natural extension of 4,000 years of mathematics
Alexander Stepanov (2002),

 https://www.youtube.com/watch?v=COuHLky7E2Q

STL and Its Design Principles
Generic Programming

● Egyptian multiplication ~ 1900-1650 BC
● Ancient Greek number theory
● Prime numbers
● Euclid’s GCD algorithm
● Abstraction in mathematics
● Deriving generic algorithms
● Algebraic structures
● Programming concepts
● Permutation algorithms
● Cryptology (RSA) ~ 1977 AD

STL Data Structures

● they implement whole-part semantics (copy is deep - members)

● 2 objects never intersect (they are separate entities)

● 2 objects have separate lifetimes

● STL algorithms work only with Regular data structures

● Semiregular = Assignable + Constructible (both Copy and Move operations)

● Regular = Semiregular + EqualityComparable

● => STL assumes equality is always defined (at least, equivalence relation)

Video: "Regular Types and Why Do I Care"

STL Iterators

● Iterators are the mechanism that makes it possible to decouple algorithms from containers.

● Algorithms are template functions parameterized by the type of iterator, so they are not restricted

to a single type of container.

● An iterator represents an abstraction for a memory address (pointer).

● An iterator is an object that can iterate over elements in an STL container or range.

● All containers provide iterators so that algorithms can access their elements in a standard way.

STL Iterators

Ranges

● STL ranges are always semi-open intervals: [b, e)

● Get the beginning of a range/container: v.begin(); or begin(v);

● You can get a reference to the first element in the range by: *v.begin();

● You cannot dereference the iterator returned by: v.end(); or end(v);

STL Iterators
Iterate a collection (range-for)

for(auto it = v.begin(); it != v.end(); ++it) { … }

std::array<int, 5> v = {2, 4, 6, 8, 10};

for(auto val : v) { … }

auto it = v.begin();
auto end = v.end();
for(; it != end; ++it) { … }

https://cppinsights.io

C-style iteration vs STL Iterators
📋 Refactor existing code so that is prints numbers in reverse order.

The C way

vector<int> nrs = { 1, 549, 3, 52, 6 };

for (unsigned int n = 0; n < nrs.size(); ++n)

 cout << nrs[n] << " ";

vector<int> nrs = { 1, 549, 3, 52, 6 };

for (unsigned int i= nrs.size(); i>= 0; ++i)

 cout << nrs[n] << " ";

Output: 1 549 3 52 6

Output: ???

Can you spot any issues with
this code?

Code will execute forever! We just need
the decrement operator

Old code forgotten during refactoring.
Compiler will catch this

...or do we?

vector<int> nrs = { 1, 549, 3, 52, 6 };

for (auto i = nrs.begin(), endIt = nrs.end(); i != endIt; ++i)

 cout << *it << " ";

vector<int> nrs = { 1, 549, 3, 52, 6 };

for (auto it = nrs.rbegin(), endIt = nrs.rend(); i != endIt; ++it)

 cout << *it << " ";

Output: 1 549 3 52 6

Output: 6 52 3 549 1

Can you spot any issues with
this code? Old code forgotten during refactoring.

Compiler will catch this

C-style iteration vs STL Iterators
📋 Refactor existing code so that is prints numbers in reverse order.

The STL Iterators way

vector<int> numbers = { 1, 549, 3, 52, 6 };

for (auto i : numbers)

 cout << i << " ";

vector<int> numbers = { 1, 549, 3, 52, 6 };

for (auto i : reverse(numbers))

 cout << i << " ";

Output: 1 549 3 52 6

Output: 6 52 3 549 1

Can you spot any issues with
this code?✅ No issues here

 reverse() is an iterator adapter,
 which we’ll introduce shortly

C-style iteration vs STL Iterators
📋 Refactor existing code so that is prints numbers in reverse order.

The range-for way

Iterate a collection in reverse order
 std::vector<int> values;

C style:

 for (int i = values.size() - 1; i >= 0; --i)
 cout << values[i] << endl;

C++98:

 for(vector<int>::reverse_iterator it = v.rbegin(); it != v.rend(); ++it) { … }

STL + Lambdas:

 for_each(values.rbegin()), values.rend(),
 [](const string & val) { cout << val << endl; });

Modern C++ range-for, using iterator adapter:

 for (auto & val : reverse(values)) { cout << val << endl; }

Iterator Adaptors

Iterate a collection in reverse order

namespace detail
{
 template <typename T>
 struct reversion_wrapper
 {
 T & mContainer;
 };
}

/**
 * Helper function that constructs
 * the appropriate iterator type based on ADL.
 */
template <typename T>
detail::reversion_wrapper<T> reverse(T && aContainer)
{
 return { aContainer };
}

Iterator Adaptors

Iterate a collection in reverse order

namespace std
{
 template <typename T>
 auto begin(detail::reversion_wrapper<T> aRwrapper)
 {
 return rbegin(aRwrapper.mContainer);
 }

 template <typename T>
 auto end(detail::reversion_wrapper<T> aRwrapper)
 {
 return rend(aRwrapper.mContainer);
 }
}

Iterator Adaptors

 Homework:
Iterate through an associative container keys or values

 std::map<int, string> m; // container value types are <key, value> pairs

 for (auto & key : IterateFirst(m)) { cout << key << endl; }

 for (auto & val : IterateSecond(m)) { cout << val << endl; }

 Using the same technique shown for reverse()iteration adaptor,
 implement IterateFirst() and IterateSecond() adaptors.

 Email solutions to: gabriel.diaconita@caphyon.com

Function Objects Basics

template<class InputIt, class UnaryFunction>
void std::for_each(InputIt first, InputIt last, UnaryFunction func)
{
 for(; first != last; ++first)
 func(*first);
}

struct Printer // our custom functor for console output
{
 void operator()(const std::string & str)
 {
 std::cout << str << std::endl;
 }
};

std::vector<std::string> vec = { “STL”, “function”, “objects”, “rule” };

std::for_each(vec.begin(), vec.end(), Printer());

Lambda Functions

struct Printer // our custom functor for console output
{
 void operator()(const string & str)
 {
 cout << str << endl;
 }
};

std::vector<string> vec = { “STL”, “function”, “objects”, “rule” };

std::for_each(vec.begin(), vec.end(), Printer());

// using a lambda

std::for_each(vec.begin(), vec.end(),
 [](const string & str) { cout << str << endl; });

Lambda Functions

[capture-list] (params) mutable(optional) -> ret { body }

[capture-list] (params) -> ret { body }

[capture-list] (params) { body }

[capture-list] { body }

Capture list can be passed as follows :

■ [a, &b] where a is captured by value and b is captured by reference.

■ [this] captures the this pointer by value

■ [&] captures all automatic variables used in the body of the lambda by reference

■ [=] captures all automatic variables used in the body of the lambda by value

■ [] captures nothing

Anatomy of A Lambda

credit: Herb Sutter - “Lambdas, Lambdas Everywhere”
https://www.youtube.com/watch?v=rcgRY7sOA58

Anatomy of A Lambda

credit: Herb Sutter - “Lambdas, Lambdas Everywhere”
https://www.youtube.com/watch?v=rcgRY7sOA58

Anatomy of A Lambda

credit: Herb Sutter - “Lambdas, Lambdas Everywhere”
https://www.youtube.com/watch?v=rcgRY7sOA58

Lambda Functions

std::list<Person> members = {...};

unsigned int minAge = GetMinimumAge();

members.remove_if([minAge](const Person & p) { return p.age < minAge; });

// compiler generated code:

struct Lambda_247

{

 Lambda_247(unsigned int _minAge) : minAge(_minAge) {}

 bool operator()(const Person & p) { return p.age < minAge; }

 unsigned int minAge;

};

members.remove_if(Lambda_247(minAge));

https://cppinsights.io

Prefer Function Objects or Lambdas to Free Functions

vector<int> v = { … };

bool GreaterInt(int i1, int i2) { return i1 > i2; }

sort(v.begin(), v.end(), GreaterInt); // pass function pointer

sort(v.begin(), v.end(), greater<>());

sort(v.begin(), v.end(), [](int i1, int i2) { return i1 > i2; });

Function Objects and Lambdas leverage operator() inlining
vs.

indirect function call through a function pointer

This is the main reason std::sort() outperforms qsort() from C-runtime by at least 500% in typical
scenarios, on large collections.

STL Algorithms - Principles and Practice

“Prefer algorithm calls to hand-written loops.”
Scott Meyers, "Effective STL"

Why prefer to use (STL) algorithms?

Whenever you want to write a for/while loop:

for(int i = 0; i < v.size(); ++i) { … }

Put the Mouse Down and
Step Away from the Keyboard !

Burk Hufnagel

👉 Goal: No Raw Loops {}
Sean Parent - C++ Seasoning, 2013

Why prefer to use (STL) algorithms?

Correctness

 Fewer opportunities to write bugs like:

● iterator invalidation
● copy/paste bugs
● iterator range bugs
● loop continuations or early loop breaks
● guaranteeing loop invariants
● issues with algorithm logic

Code is a liability: maintenance, people, knowledge, dependencies, sharing, etc.

More code => more bugs, more test units, more maintenance, more documentation

Why prefer to use (STL) algorithms?

Code Clarity

● Algorithm names say what they do.

● Raw “for” loops don’t (without reading/understanding the whole body).

● We get to program at a higher level of abstraction by using well-known verbs

 (find, sort, remove, count, transform).

● A piece of code is read many more times than it’s modified.

● Maintenance of a piece of code is greatly helped if all future programmers

understand (with confidence) what that code does.

Is simplicity a good goal ?

● Simpler code is more readable code

● Unsurprising code is more maintainable code

● Code that moves complexity to abstractions often has less bugs

○ corner cases get covered by the library writer

○ RAII ensures nothing is forgotten

● Compilers and libraries are often much better than you (optimizing)

○ they’re guaranteed to be better than someone who’s not measuring

Kate Gregory, “It’s Complicated”, Meeting C++ 2017

What does it mean for code to be simple ?

● Easy to read

● Understandable and expressive

● Usually, shorter means simpler (but not always)

● Idioms can be simpler than they first appear (because they are recognized)

Kate Gregory, “It’s Complicated”, Meeting C++ 2017

Simplicity ?

● We can’t have simplicity everywhere

● The problems we’re trying to solve or model are complicated

● Moving complexity to a library (or another abstraction) is good

● Complicated guidelines that lead us to writing simpler code are good

○ Being forced to think about resources, lifetime management, invariants, etc. is also

good, even if it’s sometimes painful.

Kate Gregory, “It’s Complicated”, Meeting C++ 2017

Simplicity is Not Just for Beginners

● Requires knowledge
○ language / syntax
○ idioms
○ what can go wrong
○ what might change some day

● Simplicity is an act of generosity
○ to others
○ to future you

● Not about skipping or leaving out
○ error handling
○ testing
○ documentation
○ meaningful names

Kate Gregory, “It’s Complicated”, Meeting C++ 2017

Why prefer to use (STL) algorithms?

Modern C++ (C++11/14/17 standards)

● Modern C++ adds more useful algorithms to the STL library.
● Makes existing algorithms much easier to use due to simplified language syntax

and lambda functions (closures).

std::for_each(v.begin(), v.end(), [](const auto & val) { … });

for(auto it = v.begin(), end = v.end(); it != end; ++it) { … }

for(auto it = v.begin(); it != v.end(); ++it) { … }

for(vector<string>::iterator it = v.begin(); it != v.end(); ++it) { … }

for(const auto & val : v) { … }

Why prefer to use (STL) algorithms?

Performance / Efficiency

● Vendor implementations are highly tuned (most of the time).

● Avoid some unnecessary temporary copies (leverage move operations for objects).

● Function helpers and functors are inlined away (no abstraction penalty).

● Compiler optimizers can do a better job without worrying about pointer aliasing

(auto-vectorization, auto-parallelization, loop unrolling, dependency checking, etc.).

The difference between Efficiency and Performance

 Why do we care ?

 Because: “Software is getting slower more rapidly than hardware becomes faster.”

“A Plea for Lean Software” - Niklaus Wirth

 Efficiency and performance are not dependant on one another.

Efficiency Performance

the amount of work you need to do how fast you can do that work

governed by your algorithm governed by your data structures

Optimization
Strategy:

1. Identification: profile the application and identify the worst performing parts.

2. Comprehension: understand what the code is trying to achieve and why it is slow.

3. Iteration: change the code based on step 2 and then re-profile; repeat until fast enough.

Very often, code becomes a bottleneck for one of four reasons:

● It’s being called too often.

● It’s a bad choice of algorithm: O(n^2) vs O(n), for example.

● It’s doing unnecessary work or it is doing necessary work too frequently.

● The data is bad: either too much data or the layout and access patterns are bad.

Competitive programming

Don’t trust your instinct.

Always Benchmark !

Performance / Efficiency
Parallelize + Reduction

(map/reduce)

C++17 supports parallel versions of the std::algorithms (many of them)

=> WOW ! It became really simple to write parallel code 🎉

Eg.

Not so fast ! Let’s see...

Parallel STL Algorithms

ExecutionPolicy

● std::execution::seq

○ same as non-parallel algorithm (invocations of element access functions are indeterminately

sequenced in the calling thread)

● std::execution::par

○ execution may be parallelized (invocations of element access functions are permitted to execute in

either the invoking thread or in a thread created by STL implicitly)

○ invocations executing in the same thread are indeterminately sequenced with respect to each other

● std::execution::par_unseq

○ execution may be parallelized, vectorized, or migrated across threads (by STL)

○ invocations of element access functions are permitted to execute:

■ in an unordered fashion

■ in unspecified threads

■ unsequenced with respect to one another, within each thread

C++ 17

Parallel STL Algorithms

template<class Iterator>

size_t seq_calc_sum(Iterator begin, Iterator end)

{

 size_t x = 0;

 std::for_each(begin, end, [&](int item) {

 x += item;

 });

 return x;

}

Parallel STL Algorithms

template<class Iterator>

size_t par_calc_sum(Iterator begin, Iterator end)

{

 size_t x = 0;

 std::for_each(std::execution::par, begin, end, [&](int item) {

 x += item;

 });

 return x;

}

<= data race; fast, but often causes wrong result!

Parallel STL Algorithms

template<class Iterator>

size_t par_calc_sum(Iterator begin, Iterator end)

{

 size_t x = 0;

 std::mutex m;

 std::for_each(std::execution::par, begin, end, [&](int item) {

 std::lock_guard<std::mutex> guard(m);

 x += item;

 });

 return x;

}

<= ~90x slower than sequential version

Parallel STL Algorithms

template<class Iterator>

size_t par_calc_sum(Iterator begin, Iterator end)

{

 std::atomic<size_t> x = 0;

 std::for_each(std::execution::par, begin, end, [&](int item) {

 x += item; // or x.fetch_add(item);

 });

 return x;

}

<= ~50x slower than sequential version

Parallel STL Algorithms

Always Benchmark !

Don’t trust your instinct.

Parallel STL Algorithms

template<class RandomAccessIterator>

size_t par_calc_sum(RandomAccessIterator begin, RandomAccessIterator end)
{
 // reduce the synchronization overhead by partitioning the load
 constexpr int NCHUNKS = 128;
 assert((end-begin) % NCHUNKS == 0); // for simplicity of slide code
 const size_t sz = (end - begin) / NCHUNKS; // size of a chunk

 RandomAccessIterator starts[NCHUNKS]; // start offsets for all chunks
 for (int i = 0; i < NCHUNKS; ++i)
 {
 starts[i] = begin + sz * i;
 assert(starts[i] < end);
 }

 std::atomic<size_t> total = 0;

 std::for_each(std::execution::par, starts, starts + NCHUNKS, [&](RandomAccessIterator s)
 {
 size_t partial_sum = 0;
 for (auto it = s; it < s + sz; ++it)
 partial_sum += *it; // NO synchronization (COLD)

 total += partial_sum; // synchronization (HOT)
 });

 return total;
}

Almost 2x FASTER than sequential version 👍

 (on 8 core CPU)

Parallel STL Algorithms

std::reduce()

template<class Iterator>

size_t par_calc_sum(Iterator begin, Iterator end)

{

 return std::reduce(std::execution::par, begin, end, (size_t)0);

}

std::reduce() – just like our partial sums code – exploits the fact that operation which is used for reduce

(default: +) is associative.

template<class ExecutionPolicy, class ForwardIt, class T, class BinaryOp>

T reduce(ExecutionPolicy && policy, ForwardIt first, ForwardIt last, T init, BinaryOp binary_op);

https://en.cppreference.com/w/cpp/algorithm/reduce

C++ 17

~3% faster than our manual implementation 👍

 (on 8 core CPU)

Parallel STL Algorithms

TL;DR: std::reduce() rulezz !

Pretty much all other parallel algorithms are difficult to use properly:

- safe (no data races)

- with good performance results

(on traditional architectures; exception NUMA/GPGPU)

- don’t trust your instinct: Always Benchmark !

C++ 17

Homework

Solve these two Advent of Code challenges, using constructs presented in this
course (STL data structures, algorithms, lambda functions, range-for, etc):

https://adventofcode.com/2018/day/9 EASY

https://adventofcode.com/2018/day/13 MEDIUM

Email solutions to gabriel.diaconita@caphyon.com

See you in 2 weeks…

Don’t forget about your assignments

Homework

