
Spring ACCU 2021.3.10–13
Pre-Conference tutorials 2021.3.9

2021
CONFERENCE
PROGRAMME

V
IR

T
U

A
L

E
V

E
N

T

2 3

2021
CONFERENCE
 WELCOME

Welcome to ACCU 2021!

ACCU Conference is the annual conference
of the ACCU membership club, but open
to any and all who wish to attend. The
ACCU Conference has a history founded in
studying and evolving C and C++ – many of
its members continue to have active roles
in the C and C++ standards bodies. The
ACCU Conference has always had C++ at
it’s core, but has, from the outset, always
been about programming languages,
programming tools and techniques, and
programming processes. ACCU Conference
is a conference by programmers for
programmers about programming. Or you
could substitute software development
for programming and it would mean the
same thing. Many ACCU attenders, and
ACCU members are software developers/
programmers working as employees in
organisations, many are consultants, many
are contractors, all are in the vanguard of
thinking about programming, software
development, and how to do it better.
The ACCU Conference is rightly proud
of the ACCU (the organisation) banner
“professionalism in programming”.
Along with its C++ core content, ACCU
Conference always has sessions relating to
languages such as C#, D, F#, Go, Haskell,
Java, Kotlin, Lisp, Python, Ruby, Rust, and
Swift. Also there are always sessions on
TDD, BDD, and how to do programming
right. It isn’t just about the programming
languages, it is also about the tools and
techniques of programming.

The core of the ACCU Conference is
about developers who want to share their
experience in the form of presentation
and interactive workshops with other

developers. Even though the conference in
2020 had to be cancelled because of the
COVID-19 pandemic, many speakers are
happy to give their presentations in 2021.

So we have our usual mix of keynotes,
sessions, quickies and lightning talks.

Many thanks to all the session presenters
for submitting, making preparations,
and running the session. Many thanks as
well to all attenders for being online and
making the conference under these difficult
conditions work.

A special thanks to the sponsors and
exhibitors: they are as much attenders
as anyone. Hopefully everyone will get a
chance to talk to everyone.

The programme presented in this
document is the way we planned the
programme, however there may have
to be last minute changes. If there
are, they will be tweeted via hashtag
#ACCUConf, and the webpage https://
flame.firebird.systems/archer-yates/
ACCU2021/MyProgrammes#Programme.
ItemPage.104.0 will be updated.

Our Code of Conduct - https://accu.org/
conf-menu-overviews/coc_code_of_
conduct/ - is of course valid for this online
conference. In case of any concerns or
problems, please do not hesitate to get in
touch directly with the organizers, via the
Discord channel.

This is ACCU 2021, enjoy the keynotes,
sessions, quickies and lightning talks. Use
Twitter with the hashtag #ACCUConf. Chat
with all the exhibitors, and with each other.
ACCU is a conference for conferring!

Felix Petriconi
Conference Chair

Bloomberg is the leading provider of financial
news and information. Our R&Ddepartment
consists of 3000 engineers working across
teams in both London and New York.
We are technology people – when we write
code, we like to understand exactly what the
hardware is doing. We live and breathe C++,
and are concerned about cpu performance,
optimizations, memory allocation behaviour,
as well as higher-level software engineering
principles such as building modular, scalable,
reliable and debuggable code. We write a
lot of systems ourselves, but have embraced
the open source community. The Bloomberg

SPONSOR
HEADLINE

Terminal is the primary product we are known
for – it used to run on custom hardware, but
is now a piece of software that runs on a PC –
typically connected to 2 or more monitors. Over
315,000 customers pay a monthly subscription
to access our real-time data and news, deep
analytic functions and trading functionality
through our custom browser. You will see many
Bloomberg Terminals on most trading floors
around the world, and in the offices of influential
decision-makers within financial markets.

Undo is the leading Software Failure Replay
platform provider for engineering teams
building complex systems. Its products – UDB
and LiveRecorder – help reduce the Mean Time-
To-Resolution (MTTR) of software defects by
eliminating the guesswork in bug diagnosis.

Built for mission-critical software, Undo’s
products are trusted by the world’s largest
technology firms to quickly resolve defects
in complex applications across all phases of
the software development life cycle, allowing
them to accelerate software delivery, and more
quickly resolve customer issues.

With offices in Cambridge, UK and San
Francisco, CA, Undo’s solutions are used by
thousands of software engineers across leading
technology companies including SAP, Juniper,
Cadence Design Systems, Actian and Mentor
(a Siemens business).

SPONSORS/PARTNERSOTHER

Mosaic Financial Markets is a consulting
firm that offers a compelling and disruptive
alternative to the traditional consulting model.

We deliver in close partnership with our financial
markets clients: changes to their strategy,
business processes and technology by providing
content-rich expertise in a cost effective manner.
Our global network of independent expert
consultants enables our clients to access a deep
pool of professional knowledge ranging from
individual technical specialists to project teams
and full consulting solutions.

Mosaic is delighted to support the 2021 ACCU
conference. The largest (and rapidly growing)
part of our business is helping clients solve
hard technical problems, so we welcome
ACCU’s focus on developing professionalism
in programming and improving programming
skills. A number of ACCU people are key
members of our teams delivering complex
projects for our clients. We are always growing
our expert consultant network and want to hear
from exceptional technical professionals whose
outstanding track records attest to their proven
expertise and problem solving skills.

To learn more about what we do please get in
touch: www.mosaic.fm or email info@mosaic.fm

4 5

2021
CONFERENCE
SESSIONS INFO

6 7

SESSIONS SESSIONS

Tue 09 Mar 10:00-18:00
Title Oral Session
Presenter Gail Ollis
Presenter Kevlin Henney
Presenter Giovanni Asproni
Presenter Chris Oldwood
Presenter Roger Orr
Chair Gail Ollis
Guest Presenter Kevlin Henney

0043

ACCU 101: Early Career Day

GAIL OLLIS1, KEVLIN HENNEY2, GIOVANNI
ASPRONI3, CHRIS OLDWOOD4, ROGER M.
ORR5, JON SKEET6, JEZ HIGGINS7, ARJAN VAN
LEEUWEN8

1 Several universities, Bournemouth, Portsmouth,
Open University, United Kingdom 2 Curbralan,
Bristol, United Kingdom 3 Unknown, London, United
Kingdom 4 Freelance, Cambridgeshire, United
Kingdom 5 Freelance, London, United Kingdom
6 Google, London, United Kingdom 7 Freelance
software grandad, Birmingham, United Kingdom 8
Unknown at time of submission, Unknown at time of
submission, The Netherlands

This is an all-day pre-conference tutorial. But unlike
other tutorials, the Early Career Day is exclusively
for software developers in their first few years of
work, whether as a placement student or a graduate
level employee. In the company of others with a
similar level of experience, this supportive tutorial
will offer you clear and practical guidance in key
aspects of your work. Your tutors are wellknown
speakers selected for their excellent content and
clear delivery. If you are wondering whether the
ACCU conference is for you and how it can help
you, this is a great way to try out a ‘miniconference’
designed especially for you by experts. The day is
chaired by Dr Gail Ollis, an ACCU conference regular
who remembers what it was like to attend her first
ACCU conference. After a long career in commercial
software development, Gail is now a lecturer and
researcher in software development. Think of the
Early Career Day as a short course in honing your
craft as a software developer, with an experienced
lecturer as your course leader and expert presenters
as your tutors. The content covers a mix of personal
and technical skills, including: * Presentation skills
(in person and online) * Software processes and
architecture * Coding practices * Code review *
Getting help online * Debugging * Deployment The
day includes your very own lightning talk session
so you can, if you choose, practice sharing your
thoughts at a conference. You’re warmly invited
to take this opportunity to practice with a small,
friendly, supportive audience, but participation is
absolutely voluntary.

Tue 09 Mar 10:00-18:00
Title Oral Session
Presenter Mateusz Pusz

2021

Modern C++ Idioms

MATEUSZ PUSZ1

1 Epam Systems | Train IT, Gdansk, Poland

C++ is no longer C with classes and it never was
only an Object Oriented language. C++ is a general
purpose programming language. It has imperative,
object-oriented and generic programming features,
while also providing facilities for low-level memory
manipulation. If used correctly, it provides hard to
beat performance. Such usage requires a good
knowledge of C++ templates and Modern C++
Idioms which are much different from commonly
known design patterns popularized by GoF book
and invented to handle common use cases in pure
OO languages like Java or C#. What you will learn:
During the workshop, we will refresh and broaden
our knowledge about C++ templates and will learn
Modern C++ Idioms like Niebloid, EBO, CRTP, Type
Erasure, and many more. Crafting those skills will
allow us to build powerful tools that are useful
in the everyday work of every C++ developer.
Experience required: In order to be able to follow
the workshop, you should be current with C++ and
have some recent experience with writing simple
C++ templates. C++11/14 knowledge is suggested
but not mandatory. Environment: A laptop with a
relatively new C++ compiler. It is recommended
to have the latest version of one of the compilers
(Visual Studio, gcc or clang).

Tue 09 Mar 10:00-18:00
Title Oral Session
Presenter Peter Sommerlad

2021

Good Modern C++ Design and
Practices

PETER SOMMERLAD1

1 Better Software: Consulting, Training, Reviews,
Wollerau, Switzerland

This workshop is trying to simplify your use of C++.
We have many great rule sets to chose from, some
partially outdated, like Scott Meyers 3rd edition,
some futuristic, like the C++ core guidelines.

While working on the AUTOSAR C++ and new
MISRA C++ guidelines I found that many of the
guidelines forbid things without giving actual
guideline on how to do things and when to deviate.

Also many talks on C++ explain the modern
features and show how they work, but only few put
things into context and show what to give up and
how things combine sanely. I am guilty of that in the
past as well, e.g., with my constexpr compile time
computation talks at ACCU. This full day workshop
is the result of thinking about that. It won’t show
C++20 feature by feature, but gives a coherent set
of practices to improve your design and code using
existing standard C++ features where they give
you benefits. We will cover the following topics: *
designing function interfaces in a way that they are
easy to call correctly and hard to call incorrectly *
how to report function contract violations (at least
5 different ones) and their individual benefits and
liabilities, so you can make a conscious choice. *
what parameter passing style and return value style
works best under what conditions * how to create
(parameter) type wrappers to avoid passing wrong
arguments * class design for simple value wrappers
to improve function interfaces * mix-in strategies for
functionality and operators, so that creating value
wrappers is simpler * provide an overview of class
styles, e.g., value, manager, oo-bases and show
how to select from the rules for special member
functions * take a look at the lesser known C++11
feature of ref-qualified member functions and
show why and when to use them for your member
functions If you are brave enough, bring your own
examples that we can look at and discuss where
they are perfect and where they could be improved.
Otherwise, we will take a look at potential bugs in
the C++ standard library design.

Tue 09 Mar 10:00-18:00
Title Oral Session
Presenter Adrian Ostrowski
Presenter Piotr Gaczkowski

2021

Building and Packaging Modern C++

PIOTR GACZKOWSKI1, ADRIAN OSTROWSKI2

1 Meraki Acoustic, Gdansk, Poland 2 Intel, Gdansk,
Poland

There are many ways to build and package
your C++ code, each with a different approach
to supporting multiple operating systems and
toolchains. Integrating third-party components
into your software often means having to deal
with even more build systems. All of that without
even mentioning topics like cross-compilation.
How to grasp and handle all of this complexity?
In this workshop, we would like to show you the
modern tooling that takes a lot of burden out of
build management. We’ll cover the state of the art
utilities such as CMake, Conan, clang-format, Nix,
precommit, and Docker. Because cross-platform
development should be fun!

Tue 09 Mar 12:00-20:00
Title Oral Session
Presenter Sean Parent
Guest Presenter Sean Parent

2021

Better Code

SEAN PARENT1

1 Adobe, San Jose, The United States of America

A workshop based on the Better Code series of
lectures with opportunities to experiment and
discuss the ideas presented. Writing code is
challenging, especially writing efficient code on
large projects. We’ll cover types, algorithms, data-
structures, runtime polymorphism concurrency,
and relationships. Each section provides insight
into how to reason about your code and specific
techniques to build better code. The prerequisite
for this course is a basic understanding of C++.
Developers at all levels will learn some new ideas
and techniques to improve their code quality,
efficiency, and readability. Requirements: Please
come prepared to run a C++17 command-line
application. [Links to a github repository with
starter code will be provided in advance.]

Wed 10 Mar 09:00-10:30
Title Invited Slot
Presenter Emily Bache
Guest Presenter Emily Bache

2021

Keynote: Technical Agile Coaching
with the Samman method

EMILY BACHE1

1 Emily Bache, Göteborg, Sweden

Becoming agile as an organization is a journey. It
takes time to change attitudes and behaviours.
Especially for a larger organization, you need
a multitude of coaches and change agents to
succeed. My focus is specifically on coaching
technical practices and how people write code.
Over the years I’ve tried several approaches and
this talk is about the best way I have found so far
to promote agility amongst developers. I work
daily with teams, ensemble programming in their
production code. I also lead a short ‘learning hour’
practice session. The combination of these two
kinds of activity tends to have a powerful effect on
a team and the way they behave in their production
code afterwards. In this talk I will explain more
about the method, which I have named ‘Samman
Technical Coaching’.

8 9

SESSIONS SESSIONS

Wed 10 Mar 11:00-12:30
Title Oral Session
Presenter Mathieu Ropert

2021

This Videogame Developer Used the
STL and You’ll Never Guess What
Happened Next

MATHIEU ROPERT1

1 Paradox Development Studio, Stockholm, Sweden

The STL is sometimes seen as a strange and
dangerous beast, especially in the game
development industry. There is talk about
performance concerns, strange behaviours,
interminable compilations and weird decisions by a
mysterious “committee”. Is there any truth to it? Is
it all a misconception? I have been using the STL in
a production videogame that is mostly CPU bound
and in this talk we will unveil the truth behind the
rumours. We will start by a discussion about the
most common criticism against the STL and its
idioms made by the gamedev community. Then
we will see a few practical examples through STL
containers, explaining where they can do the job,
where they might be lacking and what alternatives
can be used. Finally we will conclude with some
ideas on how we can improve both the STL for game
developers and also how to foster better discussion
on the topic in the future. At the end of this talk,
attendees should have a solid understanding of why
the STL is sometimes frowned upon, when it makes
sense to look for alternatives to the standard and
most importantly when it does not.

Wed 10 Mar 11:00-12:30
Title Oral Session
Presenter CB Bailey
Presenter Andy Balaam

2021

What does the linker actually do for
us?

CB BAILEY1, ANDY BALAAM2

1 Bloomberg LP, London, United Kingdom 2
OpenMarket, London, United Kingdom

In this session Andy and CB explore what linkers
actually get up to when they pull together your
c++ code and libraries to produce an executable.
This session is aimed at developers who have
some experience with working with a compiled
language such as C or C++ and want to know
more about the how the last tool in their toolchain
works. The session will examine what information

object files typically contain and what is required
to make a complete executable program out of
one or more object files. All of the examples and
demonstrations will be using Linux and ELF object
files, but the concepts are applicable across most
modern environments. We’ll define concepts such
as _sections_, _symbols_, _relocations_ and look at
how code and data are managed in a program. We’ll
explore how the operating system runs a program
and how this shapes what the linker actually does.
We’ll also explore aspects particular to C++ such as
how template instantiations and inline functions are
managed. On the way we’ll look at tools that can be
used for examining object files and executables that
let us dispel the mysteries of the linker.

Wed 10 Mar 11:00-12:30
Title Oral Session
Presenter Timur Doumler

2021

How C++20 changes the way we
write code

TIMUR DOUMLER1

1 Timur Doumler, London, United Kingdom

The upcoming C++20 standard is the biggest
update in a decade. Its feature set and their impact
on how we write C++ will be as large, and possibly
larger than that of C++11. In this talk we will look at
how new features like concepts, coroutines, and
modules will fundamentally change the way we
design libraries, the way we think about functions,
and even the way we organise and compile our
code. We will also mention some long-standing
warts in C++ which are finally cured.

Wed 10 Mar 11:00-12:30
Title Oral Session
Presenter Sy Brand

Reconfirmed

Dynamic Polymorphism with Code
Injection and Metaclasses

SY BRAND1

1 Microsoft, Edinburgh, United Kingdom

Dynamic polymorphism in C++ has historically
meant virtual functions and inheritance. However,
these form only one possible design for solving
this problem, and they bring several implications
on performance, ergonomics and flexibility. Type
erasure is another way to implement dynamic
polymorphism, as demonstrated in several talks
by Sean Parent and adopted in other languages,

such as Rust’s trait objects. But implementing
type erasing objects which provide ergonomic
interfaces in C++ is cumbersome and error-prone,
leading to a large family of types and libraries with
subtly different semantics and lower adoption rates
compared to inheritance. This talk will present a
possible future design for interface-based type
erasure in C++ that marries the convenience of
inheritance to the benefits which it otherwise lacks.
It will introduce the code injection and metaclasses
facilities which are proposed for inclusion in C++
along with a prototype implementation of the
design based on the experimental metaclasses
Clang fork.

Wed 10 Mar 11:00-12:30
Title Oral Session
Presenter Filip Van Laenen

2021

Drawing for IT Architects

FILIP VAN LAENEN1

1 Computas, Oslo, Norway

Ever seen a drawing trying to explain the
architecture or the functionality of an IT system,
and you couldn’t make any sense of it because
it was drawn so badly? Do you feel that your
drawings are OK, but could probably be improved
substantially with a few tricks, but you don’t really
know what they would be? I’ve made a lot of
drawings over the years. I’m pretty sure not all of
them were a success in terms of understandability.
But at some point in time, I started reflecting on
how my drawings look, and since then, I’m getting
comments that apparently, my drawings look
good. In this session, I would like to share some of
the reflections I make when I see somebody else’s
drawing, show you some obviously bad drawings
and discuss what’s wrong with them, and some of
the tricks I use to create better drawings. The goal
should be that when you leave this session, you’ve
practiced a bit on how you can make your drawing
look better, such that the reader or the viewer will
understand it better.

Wed 10 Mar 14:00-15:30
Title Oral Session
Presenter Amir Kirsh

2021

Typical Type Typos

AMIR KIRSH1

1 Academic College of Tel-Aviv-Yaffo, Tel-Aviv,
Israel

Use of proper types is crucial for both performance
and correctness. The talk would cover bugs related
to type correctness as well as code that may work
but hide severe performance issues due to implicit
casting, creation of unnecessary temporaries or just
simple bad coding. We will walk through abruptly
sliced objects, surprisingly dandling pointers, silent
temporaries, undefined behavior and more. The
typical type typos presented in this talk are quite
common, you may find yourself browsing your
code right after this session looking for them and
meeting them face to face in your code. The talk
assumes prior knowledge of rvalue reference and
smart pointers.

Wed 10 Mar 14:00-15:30
Title Oral Session
Presenter Arno Schoedl

2021

The C++ rvalue lifetime disaster

ARNO SCHOEDL1, SEBASTIAN THEOPHIL1

1 Think Cell, Berlin, Germany

Rvalue references have been with us since C++11.
They have originally been introduced to make
moving objects more efficient: the object an rvalue
reference references is assumed to go out of scope
soon and thus may have its resources scavenged
without harm. The C++ standard library, for
example std::cref or std::ranges, makes use of yet
another aspect of rvalue references: since they go
out of scope soon, it is assumed unsafe to hold on
to them beyond the scope of the current function,
while lvalue references are considered safe. We,
too, found this assumption to be very useful for
smart memory management, in particular in
generic code. Unfortunately, the C++ language
itself violates this assumption in at least two places.
First, rvalues bind to const&. This means that
innocent-looking functions taking a parameter by
const& and passing it through in some way silently
convert rvalues to lvalue references, hiding any
lifetime limitation of the rvalues. std::min/max are
two such examples. Worse still, every accessor
member function returning a const& to a member
suffers from this problem. Second, temporary
lifetime extension is meant to make binding a
temporary to a reference safe by extending the
lifetime of the temporary. But this only works
as long as the temporary is still a prvalue. If the
temporary has been passed through a function,
even it has been correctly passed through by
rvalue reference, lifetime extension will no longer
be invoked and we get a dangling reference.
These problems are not merely theoretical. We
have had hard-to-find memory corruption in our
code because of these problems. In this talk, I will

10 11

SESSIONS SESSIONS

describe the problems in detail, present our library-
only approach to mitigate the problems, and finally,
make an impossible-to-ever-get-into-the-standard
proposal of how to put things right.

Wed 10 Mar 14:00-15:30
Title Oral Session
Presenter Luca Minudel

2021

How technical debt can kill your
business. How F1 teams crack
technical debt.

LUCA MINUDEL1, PAOLO POLCE2

1 SmHarter.com, London, United Kingdom 2
SimulWorks.com, London, United Kingdom

How technical debt can kill your business. How F1
teams crack technical debt. Abstract: Formula One
is a multibillion-dollar business, an entertainment,
and the pinnacle of the motorsport competition.
F1 teams face incredible pressure to deliver.
Nonetheless, at every race they manage to deliver
and improve at the same time, cracking the
technical debt and pursuing technical excellence.
Whereas many organisations instead struggle to
find the time to do the same under the pressure of
their delivery commitments. This session presents
4 real-life scenarios and for each one, an epic-fail
story detrimental to the business and a success
story from an F1 team, with lessons learned.

Wed 10 Mar 14:00-15:30
Title Oral Session
Presenter Peter Sommerlad

2021

Safer C++: MISRA-C++:202x rules
and beyond

PETER SOMMERLAD1

1 Better Software: Consulting, Training, Reviews,
Wollerau, Switzerland

C++ is a language of choice for implementing
software for safety critical or modern embedded
systems, however, since its inheritance of many
C features and low-level and performance focus
it allows for problematic code that still compiles.
Not only the risk of incorporating _undefined
behaviour_ and non-portability of _implementation-
defined behaviour_ can cause safety risks, but
also developers misunderstanding the underlying
rules of the language. Limiting C++ to a safer
core language is the goal of many guidelines in
this talk we show rules of a safer subset of C++

for the automotive industry by MISRA-C++:202x.
Expect well-known stuff and surprising aspects
to be addressed by such rules and what you will
get as warnings from the corresponding static
analysis tools. However, we will also look at safer
C++ design beyond MISRA-C++ rules, because such
design issues usually cannot be checked by analysis
tools, for example, the use of strong typing and
mechanisms that ease following some of the rules,
such as the use of sized integeger types.

Wed 10 Mar 14:00-15:30
Title Oral Session

Wed 10 Mar 16:00-17:30
Title Oral Session
Presenter Clare Macrae

2021

Refactoring Superpowers: make your
IDE do your work, faster and more
safely

CLARE MACRAE1

1 Clare Macrae Consulting Ltd, CAMBRIDGE, United
Kingdom

You’ve got to make a change, and the tests are
passing, but you’re struggling to get the code to
do what you need. You think you can see a way...
Maybe the code won’t compile for half an hour
whilst you bend it to your will... And maybe your
code reviewers won’t complain about the size of
the change, taking them hours to review? And if
you’re lucky and concentrate very hard, it will be
OK. Won’t it? As Kent Beck says, “Make the change
easy (warning: this may be hard), then make the
easy change.” This talk will show you techniques
to be kind to yourself - and your team - by making
seemingly complex edits in small, safe steps, with
your IDE doing much of the heavy lifting. You’ll
be less tired at the end, and confident that the
behaviour is unchanged. And users get the feature
sooner - win, win!

Wed 10 Mar 16:00-17:30
Title Oral Session
Presenter Hendrik Niemeyer

2021

A Practical Introduction to C++20’s
Modules

HENDRIK NIEMEYER1

1 ROSEN Technology and Research Center GmbH,
Lingen (Ems), Germany

Modularity is a long known principle for creating
maintainable, changeable and durable software.
In contrast to other programming languages,
C++ did not have its own module system and
used header files to structure code. But this has
changed with C++20 which introduced modules
as one of its bigger new features. In this talk I will
discuss the theoretical side of modules and their
advantages over header files (e.g. faster compile
times, invisibility of macros, preprocessor directives
and nonexported entities, fewer name collisions
and more) but the main focus will be the practical
usage of modules today. I will demonstrate how
modules can be used today with the three major
compilers and how to restructure your projects
using modules. Also the support of build systems
for modules will be discussed.

Wed 10 Mar 16:00-17:30
Title Oral Session
Presenter Kris Jusiak

2021

Future of testing with C++20

KRIS JUSIAK1

1 Quantlab Financial, LLC, Denver, The United States
of America

Testing in C++ is not easy, it requires a lot of
boilerplate code, macro usage and/or understanding
of complicated testing frameworks. But it doesn’t
have to be like that. C++20 will enable us to reinvent
the way we write tests. If taking a glance into the
future of testing in C++ peaks your interest this
session is for you. In this case study we will address
the difficulty of testing with C++ by implementing a
new, fully functional, macro-free testing framework
[1] from scratch with modern C++20 features. The
main goal will be to leverage modern C++ in order
to make the following snippet compile and run: 1. int
main() { 2. “hello world”_test = [] { // Running “hello
world”... 3. expect(12_i == fib(7)); // hello_world.
cpp:3:FAILED [12 == 13] 4. }; // tests: 1 | 1 failed 5. }
// asserts: 1 | 0 passed | 1 failed

The session will also focus on how to design
modern testing facilities such as: * Sub/sections
* Parameterized tests * Behaviour Driven
Development (BDD) At the end of this session the
audience will have a better understanding of C++20
features such as: * New additions to lambdas *
User Defined Literals (UDL) * Concepts * Source
Location As well as how and where to apply them.
Additionally, attendees will get familiar with a new,
expressive way of testing with modern C++. Let’s
get ready to test all the things at ACCU 2020 and
follow the Beyonce rule - “If you liked it then you
should put a test on it”. [1]: https://github.com/
boost-experimental/ut

Wed 10 Mar 16:00-17:30
Title Oral Session
Presenter Andrew Sutton

2021

Reflection: Compile-time
Introspection of C++

ANDREW SUTTON1

1 Lock3 Software, LLC, Kent, Ohio, The United
States of America

Static reflection is a forthcoming feature in the C++
programming that promises powerful new features
for compile-time introspection of user source code.
This feature, supported by increasingly capable
constexpr facilities, will potentially be the Next
Big Thing for C++23. This talk will cover the core
concepts of reflection and reification and discuss
several methods of providing language support for
those features, including the approach taken by
current Reflection TS and alternative approaches
that are currently being considered. The remainder
of the talk will present examples of how reflection
can be used to augment traditional generic
programming techniques to develop even more
general algorithms based on introspection of class
properties.

Wed 10 Mar 16:00-17:30
Title Oral Session
Presenter Frances Buontempo
Presenter Steve Love

2021

You can’t test this? Hammertime!

FRANCES BUONTEMPO1, STEVE LOVE2

1 BCL, Bradford, United Kingdom 2 Arventech,
Bradford, United Kingdom

How many times do people claim testing their code
is difficult, if not impossible? Or have hundreds
of tests, most of which fail on a regular basis? As
data science becomes more prevalent, we often
see few useful tests along with the code. Often
the “science” relies on data, and the tests end up
pulling in entire datasets, run for ages and only
state “fail” when they get to the end. You could hit
the code with a hammer until the tests pass, ignore
the tests or change the asserts, but does that give
you confidence to deploy your solution? Even
when the code uses randomness, you can test this.
We’ll investigate some typical problems in machine
learning, data science and programming in general,
suggesting varied approaches to testing in order to
increase confidence that your code Does The Right
Thing (TM).

12 13

SESSIONS SESSIONS

Thu 11 Mar 09:00-10:30
Title Invited Slot
Presenter Kevlin Henney
Guest Presenter Kevlin Henney

2021

Keynote: It Depends...

KEVLIN HENNEY1

1 Kevlin Henney, Bristol, United Kingdom

When you start something new, you soak up
guidelines — rules that guide, lines to not cross —
to find your way. You make progress by following
the always do this and avoiding the never do that.
With experience comes the realisation that there
are exceptions to these rules. With expertise comes
the realisation that these are not exceptions, but
highly context-dependent rules. The always do this
and never do that you’ve relied on give way to it
depends. Former certainties dissolve into a sea of
possibilities. Context and dependency on context
are hard to see, but they are critical to thinking and
to code. The creation of software is an exercise in
knowledge acquisition and retention, and there are
limits to what we know and what we can know, and
limits to what can be stated and tested, but seeing
software as knowledge structure has important
consequences. All too often, assumptions about
code dependencies and execution, remain unstated
and unexplored, hidden behind not-quiteright
mental models and weak formalisms for reasoning.
Ask any developer to draw up the dependencies
in their current system and, after a few boxes and
lines, they’ll likely run dry, having barely sketched
the tip of the tip of the iceberg. Most dependencies
are out of sight and out of mind. Mentions of
technology and third-party code are vague
(versions and vendors completely overlooked),
risk implications are unacknowledged (from left-
pad to Heartbleed), the roles of developers and
organisations and the real world are considered
a mildly inconvenient abstraction. This is software
development. This is water. This is dependency.

Thu 11 Mar 11:00-12:30
Title Oral Session
Presenter Andy Balaam

2021

Interesting Characters

ANDY BALAAM1

1 OpenMarket, London, United Kingdom

When I started learning how Unicode works,
I knew it would be useful, but I never expected
it to be so much fun. In this talk I will try to share
my excitement! We will tour some of my favourite

characters and use them to help us understand
how various character sets and encodings
work, covering Unicode in most detail, but also
mentioning the Latin-n family, GB18030 and
even EBCDIC. By the end of this session you will
have strong opinions about how UTF-16 ruined
everything, how UTF-8 is beautiful nonetheless,
and maybe you’ll even have a favourite Unicode
character yourself. Personally I am a big fan of
U+FE18.

Thu 11 Mar 11:00-12:30
Title Oral Session
Presenter Seb Rose

2021

Contrasting test automation and
BDD: an “interactions over tools”
perspective

SEB ROSE1

1 SmartBear, Edinburgh, United Kingdom

Test automation and BDD are related, but they are
not the same. To get the most out of each of them,
we need to understand the separate challenges that
they address before getting engrossed in the tools
that have been created to facilitate their adoption.
And those challenges are rooted in the interactions
between the different disciplines involved in
software specification and delivery.

In this session we’ll explore what test automation
and BDD are - and how they separately contribute
to successful inter-disciplinary agile delivery. We’ll
also spend some time describing how they’re
different, and look at several typical examples of
what can go wrong when BDD and test automation
get confused.

*** This session includes some short exercises for
participants, using Zoom break-out rooms. It is
helpful if you could have a working microphone and
(optionally) camera ***

Thu 11 Mar 11:00-12:30
Title Oral Session
Presenter Sebastian Theophil

2021

Windows, macOS and the Web:
Lessons from cross-platform
development at think-cell

SEBASTIAN THEOPHIL1

1 think-cell, Berlin, Germany

For twelve years, think-cell had been a Windows-
only software company and our codebase

of approximately 700k lines of code had
accumulated many unintentional platform
dependencies. Six years ago, we decided to
port our application to the Mac. This change has
affected every part of our development process:
the project organization, build system and the
way we program in C++ today. The commonly
used cross-platform libraries such as Qt and boost
were good tools to build on, but by themselves
were not enough. For many concepts, such as
mutexes, semaphores or shared memory, they
only offer a common interface to platform-specific
objects with very different semantics and lifetimes.
We wanted light-weight, platform-independent
C++ abstractions with identical semantics for
rendering, internationalization, file I/O, mouse
event handling, RPC calls and error reporting.
Developing these was challenging, firstly, because
we had to define which semantics our application
needed and, secondly, we had to implement them
on each platform. This was not an easy process
but I would argue it has improved the quality of
our code very much. By now, we have moved on to
the next challenge and have started to move some
functionality to web applications. We wanted to
reuse our existing code-base of course, and that
meant writing web applications in expressive,
typesafe C++. Definitely an advantage in our
book! We have built our web applications using
emscripten, but thanks to a student intern, we
generate type-safe C++ bindings, beyond those
provided by emscripten, from any typescript
interface definition. In my talk, I will give you
an overview of the C++ abstractions we have
implemented, focusing on the cross-platform
problem areas where common semantics were
hard to define due to limitations of either one of
the operating systems, and of course I will show
you our tools that let us write web application in
C++.

Thu 11 Mar 11:00-12:30
Title Oral Session
Presenter Tina Ulbrich

2021

Generic Programming without
(writing your own) Templates

TINA ULBRICH1

1 ROSEN Technology and Research Center GmbH,
Lingen (Ems), Germany

Generic programming is a technique where
functions and data structures are defined as
general as possible. The goal is that they work with
different data types and therefore are reusable.
In C++ generic functions and data structures are

typically realizes by using templates. Templates
are a great tool for generic programming but they
come with their own set of challenges. They can
be hard to read/write and influence compile times
negatively. And sometimes they are even too
generic. C++20’s concepts can help with that but I
want to show how you can be generic in your code
without writing your own templates. To do that, we
will explore some C++17 and C++20 features from
the standard library, like std::span, std::variant and
std::any. I will explain what they are, where they are
useful and how to use them. I will also show some
features you can find in other libraries, e.g. GSL.

Thu 11 Mar 11:00-12:30
Title Oral Session
Presenter Tristan Brindle

2021

An Overview of Standard Ranges

TRISTAN BRINDLE1

1 Tristan Brindle, London, United Kingdom

The ranges revolution is nearly upon us! C++20 will
include concept-enabled, range-based versions of
all the standard algorithms you know and love, as
well as new “views” which can transform the way
you write code. In this talk we’ll offer an overview
of the ranges features currently in the C++20
draft, with examples of how you can use them
to reduce verbosity, avoid bugs and improve the
correctness of your code, and in some cases get
better performance. We’ll also cover the currently-
available ranges implementations that you can use
today, without having to wait for the next version
of the standard. If you’ve heard the buzz around
ranges and are wondering what they’ll bring and
how they’ll benefit your code-base, then this is the
talk for you.

Thu 11 Mar 12:45
Title Oral Session
Presenter Chris Croft-White

Time Travel Debugging - it’s time to
Debug Different

CHRIS CROFT-WHITE - ENGINEER

Time Travel Debugging simplifies debugging by
letting developers freely step backwards, as well as
forwards, through a program’s execution.

In this practical lunch and learn session we’ll
demonstrate benefits of Time Travel debugging
and show how it delivers a radically simplified
workflow for debugging, compared to traditional
methods of debugging forwards.

14 15

SESSIONS SESSIONS

Our Engineer will walk through how developers can
simplify fixing bugs by:

Deterministically capturing and replaying a
program’s behavior

Time traveling backward (and forward) in the
code execution to the origin of the failure

Reducing the amount of repetitive guesswork
and time consuming restarts and stops normally
involved in debugging

The demonstration will feature UDB, Time Travel
Debugger and the open source debugger, RR.

Thu 11 Mar 14:00-15:30
Title Oral Session
Presenter Chris Oldwood

2021

PowerShell for the Curious

CHRIS OLDWOOD1

1 Freelance, Godmanchester, United Kingdom

PowerShell was unleashed on Windows developers
and administrators back in 2006 in an effort to fill
the long standing Windows CLI void. Fast forward
10 years and the shell-cum-scripting language can
now also be found on macOS and Linux as part of
Microsoft’s new found love for Open Source and
cross-platform tooling. Unlike traditional shells
which traffic in lines of text, PowerShell leverages
.Net Core and allows whole objects, generated by
its own ‘cmdlets’, to be passed through pipelines
alongside the simple lines of text generated by
the vast catalogue of existing command line tools
we all know and love. As a consequence this
shell / scripting language hybridization means
that administrators and developers can solve
problems using whichever paradigm they are most
comfortable with. Throw in support for remoting,
modules, a package manager, the native .Net Core
libraries, etc. and you have a mature ecosystem
for writing everything from cryptic one-liners to
fullblown applications. If PowerShell has entered
your conscious incompetence and you’re curious
about what it might offer, this talk introduces you to
the basic concepts and aims to give you enough of
a grounding to help you explore further.

Thu 11 Mar 14:00-15:30
Title Oral Session

Thu 11 Mar 14:00-15:30
Title Oral Session
Presenter Alan Griffiths

2021

What use is a confined user shell?

ALAN GRIFFITHS1

1 Canonical, United Kingdom

A user shell is the way in which a user interacts
with a computer system. It is the way in which
input from keyboards, mice, touchscreens etc
reach the system and applications and the way that
output reaches the screen. A shell is responsible
for launching applications, routing input to the
focussed application and compositing the output
from the visible applications onto the display.
Confinement is a way of restricting the capabilities
of a program to specific devices, parts of the
filesystem and other features of the system. An
“unconfined” program can access anything that
the user has permissions to do. So, for example,
it could read any of the user’s files and copy
them to the internet. The use of confinement is of
increasing importance in computing as the basis
for trust between the developer of a program and
its user becomes increasingly tenuous. Drawing
from experience with adapting graphical shells
and other applications to “confined” execution we
examine what is needed to securely run untrusted
applications on a computer.

Thu 11 Mar 14:00-15:30
Title Oral Session

Thu 11 Mar 14:00-15:30
Title Oral Session

Thu 11 Mar 14:00-14:20
Presenter Victor Ciura

2021

C++ UNIverse

VICTOR CIURA1

1 CAPHYON, Craiova, Romania

Performance has always been the goal for C++
and that can frequently come in conflict with
teachability. Since I was a student, twenty years
ago, until today C++ has been a staple diet in
universities across the globe. But “C++ as a first
language”... really? There is a lot of room for us
to make C++ more teachable and improve the
quality of C++ teaching in UNI, so long as we’re
not talking about CS1. First, students have to get
over the hurdle of being algorithmic thinkers and
then we can give them a language that has these
sharp edges. Is this a lost cause? I think not. Modern
C++ is simpler and safer and we have numerous
opportunities to make it more teachable at the
same time. “The king is dead, long live the king!”

Thu 11 Mar 14:00-14:20
Presenter Piotr Gaczkowski

2021

Building portable C++ packages: the
Curse of Abundance

PIOTR GACZKOWSKI1

1 Meraki Acoustic, Gdansk, Poland

Some people believe that freedom of choice is the
best thing we can get. If you’ve built a few C++
projects in your lifetime you may have experienced
the freedom of choice: Makefile, autotools, shell
scripts, Waf, Bazel, Maven, QMake, CMake, ...!
This buffet is much more than any single person
can eat! When building Songcorder, a vinyl-to-
digital converter, I had to integrate libraries built
with a combination of Makefiles, Waf, CMake, and
Conan. And to make them work on Linux, Mac, and
Windows. With a nice CI/CD pipeline. I came up with
a fusion dish that neither looks or tastes very good.
But at least it satisfies the hunger. I’ll share with you
some of my insights into the current landscape of
build tools and what I learned on this journey.

Thu 11 Mar 14:20-14:40
Presenter Ahto Truu

2021

Programming as a sport -- what do
you mean?

AHTO TRUU1

1 Guardtime, Tallinn/Tartu, Estonia

Humans tend to be competitive. With that in
mind, it is perhaps not surprising that anything
can be turned into sports, including intellectual
activities like programming. This short presentation
intends to give an overview of the world of
competitive programming and also reflect a bit on
its relationship to software engineering. If there is
enough interest, we may follow up with a practice
session after the hours!

Thu 11 Mar 14:20-14:40
Presenter Adrian Ostrowski

2021

Building portable C++ packages: the
bliss of unification

ADRIAN OSTROWSKI1

1 Intel, Gdansk, Poland

There are many ways to build and package
your C++ code, each with a different approach

to supporting multiple operating systems and
toolchains. Integrating third-party components
into your software often means having to deal
with even more build systems. All of that without
even mentioning topics like cross-compilation.
How to grasp and handle all of this complexity?
In this talk, you will be presented with a portable
solution to building and packaging your code using
CMake. You’ll discover how to easily create and use
toolchains for different platforms. Lastly, you’ll learn
how to package your code and easily leverage pre-
built packages using Conan.

Thu 11 Mar 14:45-15:05
Presenter Amir Kirsh

2021

The Point Challenge - returning
different types for the same
operation

AMIR KIRSH1

1 Academic College of Tel-Aviv-Yaffo, Tel-Aviv,
Israel

Types are important as a tool for enforcing
program correctness. In this session we would
discuss types, specifically - Point. There is no
real logic in adding up two points (result is
meaningless) - so we probably may not implement
operator+ for Point... Unless we want to calculate
an average location, then summing 2 points and
dividing by two should be supported, preferably
treating the result as a real Point only after the
division by 2. We would discuss this problem and
see how we can implement methods that return
different types for (almost) the same operation
and enforcing compile time type correctness.
Discussion would go through actual code and
usage of cool C++ features such as if constexpr,
advnaced template techniques and more.

Thu 11 Mar 14:45-15:05
Presenter Richard Wallman

2021

Testing your tests with code
coverage

RICHARD WALLMAN1

1 Civico Ltd, Birmingham, United Kingdom

Everyone is writing tests for their code, right?
Having tests is a good start, but unless you’re
testing every single line of code, there’s still chances
for “fun” times with bugs. Having an incomplete set
of tests can provide a false sense of security, but
manually checking every possible execution path is

16 17

SESSIONS SESSIONS

tedious and error-prone. Thankfully, there are tools
which, when used in conjuction with our test suite,
can highlight code that is never executed - the gaps
in our test cases. Armed with this information, we
can add to our existing test suites to cover these
(hopefully edge) cases. This talk will focus on the
GNU Compiler Collection, but other compilers
(such as Clang) also include similar tools. This talk is
about the process, not the tools.

Thu 11 Mar 14:45-15:05
Presenter Natalia Pryntsova

2021

Services evolution: required is
forever

NATALIA PRYNTSOVA1

1 Bloomberg LP, NY, The United States of America

With more and more systems moving to a
microservices architecture, we often find
ourselves designing new integration endpoints
and scrutinizing message schemas. As we design
new service APIs, one thing is certain – at some
point, it will need to change, preferably without
breaking every service around it. And this is where
backward compatibility matters.

This talk is about schema versioning and different
options to consider when designing services.
Binary serialization or JSON? Shared schemas or
schema-less? We will start with a brief overview of
backward and forward compatibility and why both
are important, but tricky to achieve in practice.
Next, we will dive into details of JSON and binary
serialization issues. For binary serialization, we
will use Apache Avro and Google Protobuf as
examples and we will explore implementation
details of integer packing and the usage of field
IDs. Finally, we will summarize how encoders drive
compatibility and, eventually, service evolution.

Thu 11 Mar 15:10-15:30
Presenter Jim Hague

2021

Handling large volumes of
immutable structured data with
ClickHouse

JIM HAGUE1

1 Sinodun Internet Technologies Ltd, Oxford, United
Kingdom

Are you on the receiving end of a firehose of
immutable structured data, which you want to
analyse using SQL queries? Have you come across

ClickHouse before? ClickHouse is an open-source
columnoriented database management system
with SQL querying written in C++. For the past few
years I’ve been using it at the heart of an analytics
application handling 12 billion records of DNS
transactions daily on a cluster of 4 servers. This
talk will give an introduction to ClickHouse and
demonstrate what you can do with it and a large
lump of data on a humble laptop.

Thu 11 Mar 15:10-15:30
Presenter Lotte Steenbrink

2021

Tools that spark joy: lessons learned
from the Rust ecosystem that can be
adopted elsewhere

LOTTE STEENBRINK1

1 Ferrous Systems, Berlin, Germany

Tooling is an essential part of creating solid
software: it helps us find errors, build what we
want and understand what we’ve built. With
a compiler that’s eager to help, accessible
documentation and modern dependency
management, Rust consistently scores highest in
developer surveys when it comes to development
tools. Working with Rust in 2020, I learned just
how much its ecosystem lives up to this reputation,
and wished I’d had a similar experience in C and
C++ projects. However, switching to Rust shouldn’t
be the only way to have this aha moment. Instead,
we can examine Rust’s tooling to learn how it
manages to provide you with exactly the help
you need - exactly when you need it, and apply
this knowledge to the helpers we build for our
own ecosystem. This talk examines the culture,
technical insights and resulting design decisions
that shaped how the Rust community approaches
tooling. We’ll be looking at core infrastructure
like rustc and learn how their best practices
organically influenced third-party efforts such as
knurling-rs. We’ll wak through what Rust’s friendly
tooling looks like in practice, and which lessons
learned from building it can be applied to improve
development workflows in other languages too.

Thu 11 Mar 15:10-15:30
Presenter Seb Rose

2021

Example mapping: a structured,
collaborative discovery technique

SEB ROSE1

1 SmartBear, Edinburgh, United Kingdom

Is your team struggling with unproductive meetings
and workshops? Are you unsatisfied with how your
team comes together to refine requirements and
specify solutions? Have you heard about example
mapping and want to know more? Specifying and
delivering software is a process of discovery. No
team has ever delivered a valuable product without
discovering many things during the development
process, but many teams struggle to get good at
discovery. Matt Wynne created a technique called
example mapping that has helped thousands of
teams around the world use examples to reach
a shared understanding of the problems that
need solved. As a consequence there are fewer
misunderstandings, fewer disagreements, and a
smoother flow of value delivery. This session will
teach you what example mapping is and why it
works. Through a series of practical demonstrations,
we will explore the essential actions needed
to prepare for, facilitate, and derive value from
example mapping. This knowledge will then make
it simple for you and your teams to adopt example
mapping successfully (using the many excellent
online teaching resources available) and adapt it to
your specific context.

Thu 11 Mar 16:00-17:30
Title Oral Session
Presenter Greg Law
Presenter Dewang Li

Reconfirmed

Modern Linux C++ debugging tools -
under the covers

GREG LAW1, DEWANG LI2

1 Undo, Cambridge, United Kingdom 2 Synopsys
Software Integrity Group, Mountain View, The
United States of America

An overview of how some of the seemingly-magical
modern Linux C++ tools actually work so that you
can get the most from them. C++ is a language and
ecosystem that is unashamedly close to the metal,
and to be an expert practitioner an understanding
of compiler and OS fundamentals is essential, and
this includes debugging and profiling tools. The last
decade has seen a ‘cambrian explosion’ in tooling:
Valgrind, perf, Address Sanitizer, rr, Live Recorder,
Coverity and cppcheck have either arrived or
become mainstream and even good old GDB has
come a long way. Greg gives an overview of how
these amazing/magical tools are implemented often
exploiting a combination of compiler, OS and CPU
features. Contains details on ptrace, DWARF debug
info, how static analyzers work, record and replay
systems - so that you can select the right tool for
the job and then get the most out of it.

Thu 11 Mar 16:00-17:30
Title Oral Session
Presenter Bob Steagall

Reconfirmed

The Business Value of a Good API

BOB STEAGALL1

1 KEWB Computing, Gaithersburg, MD, The United
States of America

As programmers, we use APIs every day, whether
it is at the library level, the subsystem level, or the
individual component level. And yet, using many
existing APIs is often an unsatisfying experience,
for any number of reasons: poor documentation,
confusing component interfaces, muddled
abstractions, broken/missing functionality, etc.
So how can we distinguish between a good API
and a bad API? More importantly, how can we
make the argument to our managers that good
APIs, whether obtained off-the-shelf or built in-
house, are a prudent investment? This talk seeks to
discuss these questions and perhaps provide some
answers. We’ll look at specific criteria for evaluating
the goodness and/or badness of an API. We’ll cover
the concepts of technical debt and software capital,
and define a relationship between them and API
goodness/badness. We’ll also discuss a simple
iterative process for building APIs which can help
avoid technical debt and increase software capital.

Finally, we’ll cover some recommendations for
doing evaluations, using the process in day-to-day
work, and convincing management of your wisdom.

Thu 11 Mar 16:00-17:30
Title Oral Session
Presenter Zhihao Yuan

2021

Thinking in Immediate: ImGUI

ZHIHAO YUAN1

1 SimpleRose Inc, St. Louis, The United States
of America

When programming graphical user interfaces,
sometimes we might think, “Ah, I wish to have an
event listener that triggers when this data member
changes!” Before laughing at yourself, adding
getters and setters everywhere so that you can
emit a signal whenever you want, I want to tell
you, your naive thought is actually the right way
of thinking about that program. If you have data,
the GUI should follow the data. Data change GUI
change. Two widgets use that data, two widgets
change at the same time. That is, Immediate Mode
GUI. This talk will introduce immediate mode GUI

18 19

SESSIONS SESSIONS

programming with *pyimgui*, a Python library that
pushes the elegance of the Dear ImGUI library in
C++ to a new boundary. This time, let’s think in
immediate, think functional, express your program
with no callbacks, and bring back the joy of
programming.

Thu 11 Mar 16:00-17:30
Title Oral Session
Presenter Erika Sweet

2021

Cross-Platform Pitfalls and How to
Avoid Them

ERIKA SWEET1

1 Microsoft, Redmond, Washington, The United
States of America

C++ cross-platform development is difficult. These
difficulties are compounded by the fractured
solution space, where every project seems to use
a different combination of build systems, package
managers, and diagnostic tools to address shared
challenges. Join us for a discussion and demo of
C++ cross-platform development centered on
common pitfalls and widely adopted tooling.

Learn how to leverage CMake and its new
CMakePresets.json to seamlessly build across
operating systems and platforms. Untangle your
dependencies with tools like vcpkg and Conan to
avoid inconsistencies between system package
managers. Debug your projects across multiple
platforms with remote debugging. We’ll also
explore how CMakePresets.json is supported on the
CMake command line, in Visual Studio, and in Visual
Studio Code.

Thu 11 Mar 16:00-17:30
Title Oral Session
Presenter Alisdair Meredith

Reconfirmed

Frictionless Allocators

ALISDAIR MEREDITH1

1 Bloomberg LP, New York, The United States of
America

The benefits of users taking control over their
own memory allocation strategy have been
demonstrated many times at previous ACCU
conferences. However, despite these benefits and
ongoing support in the C++ Standard, allocator
aware software has not yet become widespread
throughout the C++ community. One of the main
sources of resistance is perceived complexity when

providing allocator support in our libraries, which
is the prerequisite for empowering users to make
choices optimal to their circumstances. This talk
will tackle that complexity head-on, seeking to
remove the friction between library support and
user. First, we will examine the sources of friction
when writing allocator awre code in C++ today.
Then, we will then suggest a small selection of
potential language extensions that would permit
much cleaner expression of the same designs
deployed today. We aim to take the friction out of
the system! This talk provides an early preview of
several language proposals we hope to send to the
ISO C++ committee for C++23 and beyond; it will
touch on lessons learned from an early prototype
implementation; and we will discuss how to judge
when the proposal and experience with it are
mature enough to take up valuable committee time
to move forward!

Fri 12 Mar 09:00-10:30
Title Invited Slot
Guest Presenter Patricia Aas

Confirmed

Keynote: Who are they, and what do
they want?

PATRICIA AAS1

1 Patricia Aas, Oslo, Norway

Over the last two decades the security posture
of operating systems, hardware vendors and
compilers have dramatically improved. Interestingly,
during that same period, we have seen a rising
level of “professionalism” on the part of those that
do binary exploitation. What does that mean for
us as programmers? Where are we vulnerable?
And maybe most of all: who are our adversaries,
what are they trying to achieve and what are their
capabilities?”

Fri 12 Mar 11:00-12:30
Title Oral Session
Presenter Victor Ciura

2021

AddressSanitizer on Windows

VICTOR CIURA1

1 CAPHYON, Craiova, Romania

Clang-tidy is the go-to assistant for most C++
programmers looking to improve their code,
whether to modernize it or to find hidden bugs
with its built-in checks. Static analysis is great, but
you also get tons of false positives. Now that you’re

hooked on smart tools, you have to try dynamic/
runtime analysis. After years of improvements
and successes for Clang and GCC users, LLVM
AddressSanitizer (ASan) is finally available on
Windows, in the latest Visual Studio 2019 versions.
Let’s find out how this experience is for MSVC
projects. We’ll see how AddressSanitizer works
behind the scenes (compiler and ASan runtime)
and analyze the instrumentation impact, both in
perf and memory footprint. We’ll examine a handful
of examples diagnosed by ASan and see how easy
it is to read memory snapshots in Visual Studio, to
pinpoint the failure. Want to unleash the memory
vulnerability beast? Put your test units on steroids,
by spinning fuzzing jobs with ASan in Azure,
leveraging the power of the Cloud from the comfort
of your Visual Studio IDE.

Fri 12 Mar 11:00-12:30
Title Oral Session
Presenter Charles Weir

2021

Playing with Security

CHARLES WEIR1

1 Lancaster Univesity, Lancaster, United Kingdom

Software security is scary, right? Well, no, it
doesn’t have to be. In this workshop we’ll learn,
by doing, how to understand software security
and the decisions we need to make. In the Agile
Security Game, we’ll work in teams, prioritising
security improvements to an app-based payment
application and its infrastructure. We’ll learn from
the discussions and from the impact of security
events following our decisions. Not only is the
game fun, it also provides an excellent way of
helping colleagues back at work to discuss and
approach the issues of software security. As a
participant, you’ll receive instructions for how to
set up similar game workshops yourself and we’ll
discuss how best to introduce them in different
team environments. If you were at Angela Sasse’s
ACCU 2019 keynote (https://www.youtube.com/
watch?v=tBmF7ofKoYQ), this workshop picks up
on many of the issues she raised. The workshop
does not depend on having seen Angela’s keynote,
however, and anyone can attend.

Fri 12 Mar 11:00-12:30
Title Oral Session
Presenter Eoin Woods

2021

API Vulnerabilties and What to Do
About Them

EOIN WOODS1

1 Endava, London, United Kingdom

Thanks to the increasingly dangerous threat
landscape, a large number of high profile security
breaches, and the tireless work of organisations
like OWASP, security is finally becoming a high
priority topic in many software development
projects. For many years OWASP have provided
simple, practical guidance on security to software
developers, their best known output probably
being their “Top 10” lists of vulnerabilties for
webapps and mobile development. However
in recent years the explosion in popularity of
application APIs has opened up another dangerous
attack vector in many systems. In response,
OWASP have recently developed their “API
Security Top 10” list to provide similar guidance
for APIs.

In this talk we will review the current security
landscape, particularly as it relates to API-based
applications, and explore the API Security Top
10 vulnerabilities in order to understand the top
security threats to our APIs, which ones we might
have missed in our systems, and what practical
mitigations we can use to address them when we
get back to work after the conference.

Some of this (such as logging and monitoring) will
probably be familiar to those who who are already
aware of the webapp Top 10, but is likely to bring a
different perspective to it, while other parts (such
as payload related problems) is likely to be new.

Fri 12 Mar 11:00-12:30
Title Oral Session
Presenter Arno Schoedl

2021

From Iterators To Ranges — The
Upcoming Evolution Of the
Standard Library

SEBASTIAN THEOPHIL 1, ARNO SCHOEDL2

1 think-cell, Berlin, Germany 2 Think Cell, Berlin,
Germany

Pairs of iterators are ubiquitous throughout the
C++ library. It is generally accepted that combining
such a pair into a single entity usually termed
Range delivers more concise and readable code.
Defining the precise semantics of such Range
concept proves surprisingly tricky, however.
Theoretical considerations conflict with practical
ones. Some design goals are mutually incompatible
altogether.

20 21

SESSIONS SESSIONS

Fri 12 Mar 11:00-12:30
Title Oral Session
Presenter Patrick Martin

2021

Hideous Mathematics for the
software engineer

PATRICK M. MARTIN1

1 Bloomberg LP, London, United Kingdom

= Why the word “hideous”? This is not a comment
on mathematics per se, but on the consequences
of having an inappropriate model of the work we
do. = The proposition Programming is an inherently
mathematical discipline. The supporting raw
electronics and computing components only follow
simple rules, yet have the capacity for the most
complex outcomes. For these systems it is clear
that having a good mathematical intuition of the
properties of such components is essential for any
in depth work. I propose that this paradigm remains
relevant as we move up to higher abstractions
in the computing stack towards the realm of the
human elements and the projects they conceive.
I will visit a number of models, which either have
heuristics or suggest processes, and discuss if,
how and when they benefit us when applied to
programmers and products. Finally, if there is
a suggestion for the optimum course of action
when applying a model, this implies a penalty for
applying a less apt model, or applying the better
model, but skipping more appropriate processes.
Less tactfully: what happens when we get things
wrong? Given this will be a topic in which everyone
in the room will be an expert, expect some
audience participation!

Fri 12 Mar 14:00-15:30
Title Oral Session
Presenter Dom Davis

2021

Hi, I’m Dom, and I Have Depression!

DOM DAVIS1

1 Tech Marionette, Norwich, United Kingdom

Which for a session title at a tech conference
isn’t what you expect. And this isn’t what you
expect from an abstract. The session probably
isn’t what you expect either. Of course, to look at
me, you wouldn’t realise half the problems I deal
with, because a lot of the time I’m hiding behind
the logic of code, and the shield of electronic
communication. Turns out you wouldn’t realise it
with most people. We’re fun like that. In this session

we’re going to look at neurodiversity. What it can
mean for your team. What it can mean for you;
regardless of if you classify yourself as neurodiverse
or not. You can join in, or you can sit and listen. It’s
up to you. The idea is to have fun, share ideas, and
learn.

Fri 12 Mar 14:00-15:30
Title Oral Session
Presenter Rob Richardson

2021

JavaScript the Grumpy Parts

ROB RICHARDSON1

1 @rob_rich, Gilbert, AZ, The United States of
America

We love JavaScript, but we must admit: it’s weird.
Why does `this` behave as it does? How does
variable scope work? Why do we have such comical
behavior when comparing mixed types? Let’s pull
back the covers of these scenarios, and learn how
it truly works. You may find a new reason to fall in
love with JavaScript.

Fri 12 Mar 14:00-15:30
Title Oral Session
Presenter Ahto Truu

2021

How to build digital signatures from
hash functions

AHTO TRUU1

1 Guardtime, Tallinn/Tartu, Estonia

In modern societies, more and more paper
documents and ink signatures are replaced with
their electronic equivalents. Now the ascent of
quantum computing threatens to render all current
digital signature systems insecure. Hash functions,
however, seem to be quite resilient to quantum
attacks and thus a promising building block for
future cryptographic protocols. The talk will recap
the essentials of the existing digital signature
systems as well as cryptographic hash functions
and then show how the former can be built from
the latter. Curiously enough, a digital signature
system based on hash functions was one of the
first to be invented when the idea of asymmetric
cryptography was introduced to the world! In
addition to reviewing the most important historical
systems, the talk will also cover a brand new one
developed over the past few years.

Fri 12 Mar 14:00-15:30
Title Oral Session
Presenter Mateusz Pusz

2021

Rethinking the Way We Do
Templates in C++

MATEUSZ PUSZ1

1 Epam Systems | Train IT, Gdansk, Poland

Template metaprogramming is hard. In case it is
hard only for the library implementer then it is not
that bad. The problem arises when it also affects
the users of this library. This talk is summarizing
my experience and thoughts gathered during the
implementation of the Physical Units Library for
C++. The way we do template metaprogramming
now results with inscrutable compile-time errors
and really long type names observed while
debugging our code. That is mostly caused by
aliasing class template specializations of non-trivial
metaprogramming interface designs. Compilation
times of such code also leave a lot of room for
improvement, and the practices we chose to use in
the Standard Library are often suboptimal. Taking
into account the Rule of Chiel while designing
templated code makes a huge difference in the
compile times. This talk presents a few simple
examples (including the practices from the C++
Standard Library) of achieving the same goal in
different ways and provides benchmark results of
time needed to compile such source code.

Fri 12 Mar 14:00-15:30
Title Oral Session
Presenter Luca Sas

2021

Modern C and what we can learn
from it

LUCA SAS1

1 Creative Assembly, Horsham, United Kingdom

C is often perceived as an antiquated language
that is mostly used for legacy purposes, but many
people still prefer coding in C or in a subset of C++
that is very close to C. This is sometimes labeled
“Modern C” and the ideas behind it are becoming
more popular alongside other paradigms such as
Data Oriented Design (DOD), Zero Is Initialization
(ZII) and Centralized Memory Management (CMM).
In fact, many new systems programming languages,
such as Rust, Go and Zig, also embody a lot of
similar ideas as Modern C showcasing a high
degree of interest in these paradigms. In this talk
we will explore how programming looks like with
this different approach to C and how it addresses

matters such as API design, error handling and
resource management as well as what are the
benefits and costs of these techniques. By the end
we will gain a better understanding of how these
ideas can help improve the quality of our code,
what new languages have adopted similar concepts
and to what extent, and what lessons we can learn
from this in order to improve our own existing
codebases and styles of coding.

Fri 12 Mar 16:00-17:30
Title Oral Session
Presenter Pete Muldoon

0200

Redesigning Legacy Systems -
Strategies that work / Lessons
learned

PETE MULDOON1

1 Bloomberg LP, New York, The United States of
America

In this presentation, the focus will not be on code
but on what most developers will face at one
time or another and that is having to redesign
and replace an existing legacy system. Production
code written in the “Dark ages” with a large user
base is hitting its limits in terms of performance,
testability and maintainability. This talk looks at
what determines when a product needs a partial or
full rewrite. What tools and ingredients are needed
before you start and how to get rolling. We will
also examine the perils and pitfalls of the various
stages in the redesign of a legacy system that can
slow down or even derail getting the Product out
the door and how to avoid them. Finally we will
examine how to navigate the nightmare of rolling
this new software out to the existing user base.
Although the real world examples draw primarily on
systems written in C++, the above can be applied
to most any complex system being developed by a
Team of developers.

Fri 12 Mar 16:00-17:30
Title Oral Session
Presenter Conor Hoekstra

2021

C++ Concepts vs Rust Traits vs
Haskell Typeclasses vs Swift
Protocols

CONOR HOEKSTRA1

1 NVIDIA, Toronto, Canada

C++20 comes with Concepts - one of the four
major features of the C++20. This talk will explore

22 23

SESSIONS SESSIONS

a basic introduction to what Concepts are, how to
use them and how to write one. The talk will also
focus on how they compate to “adjacent” language
features such as Rust Traits, Haskell Typeclasses
and Swift Protocols. This talk will be a “must see”
for programming language enthusiasts.

Fri 12 Mar 16:00-17:30
Title Oral Session
Presenter Eoin Woods

2021

API Vulnerabilties and What to Do
About Them

EOIN WOODS1

1 Endava, London, United Kingdom

Thanks to the increasingly dangerous threat
landscape, a large number of high profile security
breaches, and the tireless work of organisations like
OWASP, security is finally becoming a high priority
topic in many software development projects. For
many years OWASP have provided simple, practical
guidance on security to software developers,
their best known output probably being their
“Top 10” lists of vulnerabilties for webapps and
mobile development. However in recent years the
explosion in popularity of application APIs has
opened up another dangerous attack vector in
many systems. In response, OWASP have recently
developed their “API Security Top 10” list to provide
similar guidance for APIs.

In this talk we will review the current security
landscape, particularly as it relates to API-based
applications, and explore the API Security Top
10 vulnerabilities in order to understand the top
security threats to our APIs, which ones we might
have missed in our systems, and what practical
mitigations we can use to address them when we
get back to work after the conference.

Some of this (such as logging and monitoring) will
probably be familiar to those who who are already
aware of the webapp Top 10, but is likely to bring a
different perspective to it, while other parts (such
as payload related problems) is likely to be new.

Fri 12 Mar 16:00-17:30
Title Oral Session
Presenter John Lakos

2021

Lakos’20: The “Dam” Book is Done!

JOHN S. LAKOS1

1 Bloomberg LP, NYC, The United States of America

Writing reliable and maintainable C++ software is
hard. Designing such software at scale adds a new
set of challenges. Large-scale systems require more
than just a thorough understanding of the logical
design concepts addressed in most popular texts.
To be successful on an enterprise scale, developers
must also address physical design, a dimension of
software engineering that may be unfamiliar even
to expert developers. More than two decades in
the making, Large-Scale C++, Volume I: Process
and Architecture, is finally here! Drawing on his
over 30 years of hands-on experience building
massive, mission-critical enterprise systems, John
Lakos — using select excerpts from this glisteningly
new volume — elucidates the essential value of
(and several techniques needed for) creating
and growing hierarchical reusable software, a.k.a.
Software Capital, as the foundation for developing
C++ software at virtually unbounded scale.

Fri 12 Mar 16:00-17:30
Title Oral Session
Presenter Vittorio Romeo

2021

C++11/14 at scale - what have we
learned?

VITTORIO ROMEO1

1 Bloomberg LP, London, United Kingdom

Many years have passed since the release of C++11
and C++14. These standards brought many new
features and idioms to the C++ language and
revitalized its community. Nowadays, with C++20
having one foot out the door, it is important to
look back at the experience gained using C++11/14
at scale and re-evaluate their impact. - What have
we learned from 8 years of using Modern C++ in
production at a large-scale corporation? - What
features were the most useful? - Which ones were
the most misused? From unexpected benefits/
drawbacks to teachability issues, this talk will
discuss the most significant consequences of
embracing C++11 and C++14 in a company with
thousands of engineers. With some _healthy_
skepticism, commonly used features and idioms will
be reassessed to uncover some unexpected pitfalls
or qualities.

Sat 13 Mar 09:30-11:00
Title Oral Session
Code 209
Presenter Andreas Fertig

2021

C++20 Templates - The next level:
Concepts and more

ANDREAS FERTIG1

1 Unique Code, Stuttgart, Germany

C++20 is probably the biggest change to the
language since ever. In this session, we will look
into some changes that templates received with
C++20. The biggest change is the introduction
of Concepts. We don’t stop there. We will also
talk about improvements to CTAD and NTTP and
smaller improvements like explicit(bool). Of course,
we will also look into how templated lambdas work
in C++20. By the end of the talk, attendees have
learned about the newest C++20 template updates
and how to apply them.

Sat 13 Mar 09:30-11:00
Title Oral Session
Presenter Anthony Williams

2021

Concurrency in C++20 and beyond

ANTHONY WILLIAMS1, 2

1 Just Software Solutions Ltd, St Just, United
Kingdom 2 Engineered Arts Ltd, Falmouth, United
Kingdom

C++20 is set to add new facilities to make writing
concurrent code easier. Some of them come
from the previously published Concurrency TS,
and others are new, but they all make our lives
as developers easier. This talk will introduce the
new features, and explain how and why we should
use them. The evolution of the C++ Concurrency
support doesn’t stop there though: the committee
has a continuous stream of new proposals. This
talk will also introduce some of the most important
of these, including the new Executor model.
These include `std::jthread`, which provides
automatic joining of threads, `std::stop_token` for
cooperative signalling of shutdown, `std::latch`
for notifying when a batch of operations have
completed, `std::barrier` for multithreaded loop
synchronization, and `std::counting_semaphore`
for general, flexible synchronization

Sat 13 Mar 09:30-11:00
Title Oral Session
Presenter Jim Hague

2021

Building and organising a multi-
platform development code base

JIM HAGUE1

1 Sinodun Internet Technologies Ltd, Oxford, United
Kingdom

There must be few codebases that don’t face some
sort of cross-platform or multi-platform challenge.
The size of the challenge varies. At its simplest
it might be just to get your system working on a
limited number of different releases of the same
operating system running on the same processor
architecture. Or perhaps you’ve been asked to make
your Linux application run on AIX - a job filled with
snake Dpits to trap the unwary, as anyone who’s
crossed swords with AIX will know. And at the
extreme, you may be faced with cross-compiling
from a variety of host operating systems to target
multiple very different operating systems, GUIs,
processor architectures and toolchains.

Judging by some of the open source libraries I’ve
been working with recently, this isn’t an area that’s
commonly done well. This aim of this session is to
share techniques and experiences of organising and
building multi-platform and cross-platform code.
I’ll be looking at the common approaches to multi-
platform and cross-platform coding and how some
build tools I’ve experienced deal with it.

There will also be a bit of a rant about GNU
Autotools and the perils of system introspection. But
mainly I want this to be a highly interactive session.
I want to hear from you, and your experiences
meeting the same challenge - what are the tools and
techniques you use, what are their good and bad
points? Let’s improve our portability together.

Sat 13 Mar 09:30-11:00
Title Oral Session
Presenter Dietmar Kühl

2021

Processing Decimal Values

DIETMAR KÜHL1

1 Bloomberg LP, London, United Kingdom

For typical interactions we are used to processing
values represented in decimal. Computers are
much more versatile processing using binary
representations. As a result it is quite common
that decimal values are processed using a
binary presentation. Sadly, doing so does cause
problems when fractional values are involved.
This presentation explains the representation of
floating points in a computer and analyses typical
problems encountered when using binary floating
points to represent decimal values. It then describes
alternative representation, in particular decimal
floating point and decimal fixed point, and why
these solve the relevant problems. A decimal fixed
point representation is the preferred approach
when the number of fractional digits used in an

24 25

SESSIONS SESSIONS

application is known. However, that is often not the
case. Thus, the design of a library implementation
for decimal floating point is discussed.

Sat 13 Mar 09:30-11:00
Title Oral Session
Presenter James Pascoe

2021

C++20 + Lua = Flexibility

JAMES PASCOE1

1 Blu Wireless, Bristol, United Kingdom

This talk describes an approach for combining
C++20 with Lua. A key benefit of this combination
is its flexibility i.e. performance critical features
can be implemented in C++, whereas, behavioural
aspects can be expressed in Lua. As Lua is
interpreted, the program’s behaviour can be
changed on-the-fly or in the field without a
compilation environment. Thus, hypotheses
can be tested, workarounds can be explored
and previously unknown requirements can be
accommodated without requiring a full release
cycle. This session presents the technical details
for how to implement such an architecture. The
aim of the session is to provide the audience with
enough knowledge to be able to implement these
ideas in their own projects. In particular, the session
will show how to use SWIG to generate bindings
and type mappings between C++20 and Lua, how
to combine Lua coroutines (which are stateful)
with stateless C++20 coroutines and how to
integrate SWIG, Lua and C++20 into a CMake build
flow. SWIG type mappings (with code available
on GitHub) are provided for: std::span, std::any,
std::optional and std::variant. This presentation is a
significantly updated and expanded follow-on to a
talk given at CppOnSea 2020. Audience members
do not need to have seen the CppOnSea talk i.e.
the session is completely standalone. However,
those that have seen the CppOnSea presentation
will benefit from the new content, in particular, the
update to C++20, the new SWIG type mappings
and a more comprehensive treatment of the
interplay between C++ and Lua coroutines.
A further benefit is that these ideas have been
tested in a large commercial deployment. As a
running exemplar, the talk will describe how Blu
Wireless (the author’s employer) has migrated
a mission-critical application from a monolithic
C++98 code-base to the C++20/Lua architecture
described here. In addition to the talk, the author
will provide a C++20/Lua application called
‘LuaChat’ (available on GitHub) to consolidate
the concepts and to provide a basis for audience
experimentation.

Sat 13 Mar 11:30-13:00
Title Oral Session
Presenter Dmitry Kandalov

2021

Limited work-in-progress for
developers

DMITRY KANDALOV1

1 Code Mine, London, United Kingdom

The idea of limited work-in-progress (WIP) is
coming from Lean methodologies. At its core it
means that new tasks should only be started when
the current piece of work is done and delivered.
Finding the right work-in-progress limit can
increase overall system (organisation) throughput.
This idea can be applied on many levels including
writing code. In this live coding session I will write
FizzBuzzWoof code kata in Kotlin showcasing
software development workflows which can be
used for limiting work-in-progress. In particular:
change size notifications, auto-revert, TDD, TCR
(test && commit || revert). Learning outcomes:
Details of workflows that help minimise work-in-
progress while writing code. Prerequisites: Basic
knowledge of a programming language similar to
Java/Scala/Kotlin.

Sat 13 Mar 11:30-13:00
Title Oral Session
Presenter Lucian Radu Teodorescu

2021

Threads Considered Harmful

LUCIAN RADU R. TEODORESCU1

1 Garmin, Cluj-Napoca, Romania

Multithreaded programming is everywhere
nowadays. However, the way we construct
multithreaded programs is still largely primitive;
similar to using gotos in the era of structured
programming. The current methods have usability,
composability, correctness and also performance
problems. This talk aims at providing a new toolset
for the multithreaded programmer. Instead of
writing our multithreaded programs in terms of
explicit threads and synchronization primitives,
one should be expressing them in terms of
tasks and dependencies between tasks. The talk
describes a method of modeling the programs
and dependencies. It also shows how one can
eliminate locks (or any synchronization primitives)
from programs. Using this method, one can raise
the abstraction of multithreaded programs, bring
back composability, improve determinism, and

also improve performance. The talk will be a mix
of theory (presented in an intuitive manner),
comparisons with other models, practical examples,
and, of course, performance considerations.

Sat 13 Mar 11:30-13:00
Title Oral Session
Presenter Erik Engheim

2021

A tour of Julia

ERIK ENGHEIM1

1 Sixty North, Oslo, Norway

A high performance, just in time compiled dynamic
language, which gives python like productivity
with C/C++ style performance. We will get into
the details of why this seemingly impossible
task was made possible through clever language
design. Then we will geek out by generating LLVM
byte code and x86 assembly code for individual
functions interactively at the command line, explore
meta programming with Julia’s LISP style macros
and learn about Julia’s powerful multiple dispatch
mechanism and how it differs from function
overloading. Julia is an upcoming language being
embraced by the scientific and high performance
computing community, running projects like Celeste
on 650 000 cores processing 178 terabytes of
astronomical data.

Sat 13 Mar 11:30-13:00
Title Oral Session
Presenter Roger Orr

2021

Let’s look at lambdas

ROGER M. ORR1

1 OR/2 Limited, London, United Kingdom

Lambda expressions first appeared in C++11 and
have been extended slightly in each revision since
then. I will be taking a look at lambdas and trying
to answer questions such as these: - what are they?
- when should I use them? - how do they work? -
what are some of the pitfalls? I hope that anyone
who knows C++ will be able to follow most of the
content, and increase their understanding of this
part of the C++ language!

Sat 13 Mar 11:30-13:00
Title Oral Session
Presenter Guy Davidson

2021

C++ and Linear Algebra

GUY DAVIDSON1

1 Creative Assembly, Hove, United Kingdom

There is a glaring omission in the standard library:
there is no built-in support for linear algebra.
This has lead to languages like Python becoming
ascendant in machine learning and artificial
intelligence. This is a strange situation to find
ourselves in. C++ is the default choice for high
performance applications. For example, in the
real-time rendering of 3D games, millions of linear
algebra calculations are performed each second,
and yet each game must create or choose a maths
library for geometry and coordinate transformation.
In this talk I will discuss the need for linear algebra,
the typical requirements of a linear algebra library,
and the proposal I am co-authoring to add linear
algebra types and syntax to the standard library.
I will present examples of simple applications in
geometry and colour manipulation, and consider
interaction with BLAS, the industry standard
FORTRAN/C linear algebra library, with a view
to implementing the new types and syntax. This
is a new talk reflecting the current status of the
proposal.

Sat 13 Mar 14:30-16:00
Title Oral Session
Presenter Kate Gregory

2021

Naming is Hard: Let’s Do Better

KATE GREGORY1

1 Gregory Consulting, Ontario, Canada

C++ developers are famously bad at naming: our
idioms, guidelines, and lore are rich in examples of
terrible names. For example, consider RAII, which
stands for scope bound resource management, or
west const which perhaps should be const west,
or all the samples that feature an object called x
which is an instance of a class called X, and so on.
The good news is that naming well is a learned skill,
and you can learn it, and start to name better right
away. In this talk, I’ll tell you why names matter,
what benefits a good name can bring, and how to
be better at naming. I’ll discuss some categories of
names and some common decisions within those
categories. I’m not going to give you a set of rules
to follow: this is about thinking and considering
the meaning of the things you are naming. I will
give you some questions to ask yourself and some
structure that I use to help me to help those who
read what I write. I’ll also address renaming things in
existing (legacy) code, why and when to do it, and

26 27

SESSIONS SESSIONS

why getting it right the first time may not even be
a realistic goal. You should be a lot more confident
naming things after we spend this time together.

Sat 13 Mar 14:30-16:00
Title Oral Session
Presenter Nico Josuttis

2021

std::jthread - I told you concurrency
is tricky

NICO JOSUTTIS1

1 IT Communication, Braunschweig, Germany

With C++20 we will have a new basic thread class,
std::jthread. It will fix a few flaws of std::thread,
which was not designed as an easy to use RAII type
and lacks the ability to support stopping a running
thread. Sounds like we only have to implement a
better destructor and add a parameter to signal
cancellation. But especially with concurrency the
devil is in the details. This is not just a talk about
jthread. It is a talk about how implementing even
pretty simply concurrency requirements can
become a tricky task with many many traps.

Sat 13 Mar 14:30-16:00
Title Oral Session
Presenter Phil Nash

2021

Write Once, Run Mobile

PHIL NASH1

1 JetBrains, Remote, United Kingdom

A cross-platform framework for mobile platforms
has been the elusive holy grail ever since Android
started to become competitive with iOS. Many
attempts have been made: Xamarin, PhoneGap
and, more recently, Flutter, to give some examples.
While some of these have had some success,
many shops that care about native experience are
still keeping iOS and Android teams siloed and
performing redundant work. This is still not a solved
problem. So why would Kotlin/ Multi-platform be
any different? We’ll see how Kotlin/ MPP captures
mindshare and familiarity, along with an architecture
that fits the way teams prefer to work. We’ll also
dive a bit deeper into how Kotlin/ Native fits into
this and how it works.

Sat 13 Mar 14:30-16:00
Title Oral Session
Presenter Pete Muldoon

2021

Retiring the Singleton Pattern,
Concrete Suggestions for What to
Use Instead

PETE MULDOON1

1 Bloomberg LP, NY, The United States of America

_“The worst part of this whole topic is that the
people who hate singletons rarely give *concrete
suggestions* for what to use instead.”_ In this talk,
we will explore just such an approach for replacing
the *Singleton* pattern in large codebases. It is
easy to slip into the pattern of creating singletons
- particularly in *_large legacy code bases_* -
where low level functions need to propagate side
effects like database updates, IPC etc. + Passing
parameters down long function call chains can be
daunting in terms of scope of change required in a
large codebase. + Additionally, users calling a long
established API in _legacy code_ are frequently
unwilling to change their calls to supplement
the current data being passed in. After briefly
reviewing a classic singleton approach to a typical
problem – sending requests to a server – and it
associated drawbacks. We will rework the example
and replace the function’s internal singleton calls
with calls to an explicitly passed in wrapper class.
The extra information required for legacy users
is injected via a custom default instance of the
wrapper so that the users of the original function
require no coding changes. We will then show how
the previously untestable function can now be
subjected to unit testing via dependency injection.
This idea is later expanded to cover * keeping
ABI stable * dealing with non-copyable types *
dealing with delayed construction * dealing with
Singleton dependency groupings * Initialization
order of interdependent singletons, replacing
error prone explicit intialization ordering with hard
to misuse automatic initialization driven by the
language. * Showing how the replacement pattern
can be gradually introduced to a large code base
instead of ‘all at once’. * statefull grouping of
dependencies. * Configuring long-lived Singleton
replacement Objects This alternative approach has
been successfully employed in multiple areas in
Bloomberg where developers believed there was
no other feasible choice.

Sat 13 Mar 14:30-16:00
Title Oral Session
Presenter Mike Shah

2021

A Study of Plugin Architectures for
supporting Extensible Software

MIKE SHAH1

1 Northeastern University, Boston, The United States
of America

It is becoming more and more common for users
to also contribute to the development of the
software that they use--especially in the domains
of computer graphics and gaming. Terms like
‘modding’ software have been around since the
early 90s when the popular game Doom allowed for
users to create their own content and modify the
behavior of the program. Behind these programs
there thus must be a mechnanism for allowing users
to ‘hook’ into the main program. In this talk, I will be
showing several software developer kits including
Autodesk Maya 3D (C++), Unity3D (C#), Unreal
Engine (C++), and QT Modeler(C), and discuss
present a case study of how they are designed. At
the end of the design discussion I will present how
to get started building your own plugin system, and
what considerations must be taken in mind (e.g.
does the application or plugin manage resources,
what should be exposed in the API, how do you
embed a scripting language, and how should you
distribute your plugins). Attendees will leave the
presentation with practical knowledge on how
to deliver software that can be extended by their
userbase.

Sat 13 Mar 16:30-18:00
Title Invited Slot
Presenter Sean Parent
Guest Presenter Sean Parent

2021

Keynote: Better Code: Relationships

SEAN PARENT1

1 Sean Parent, San Jose, CA, The United States of
America

Computer scientists are bad at relationships.
Nearly every program crash is rooted in a
mismanaged relationship, yet we spend most of
our time discussing types and functions and not
the relationships connecting them together. This
talk looks at common ways data and code are
connected in an application, how those relationships
are typically represented, and the problems caused
by the use, and misuse of these paradigms. Then
we’ll look at ways to model these relationships in
C++ and use them to build correct applications.

Sun 14 Mar 10:00-18:00
Title Oral Session
Presenter Nico Josuttis

2021

Modern C++ Template Programming

NICO JOSUTTIS1

1 IT Communication, Braunschweig, Germany

Each and every C++ programmer uses templates.
Containers such as vector<> or array<>, strings,
algorithms such as sort(), iterators, and I/O streams
are all implemented as generic code. Modern C++
adds type traits, smart pointers, template member
functions such as emplace(), and generic lambdas
as a tricky form of generic code. Nevertheless the
knowledge and understanding of how to implement
and use templates is very limited and each and
every programmer is sooner or later getting lost.
This workshop therefore discusses templates for
a whole day to make clear what it means to use
templates and how to use them in practice. The
focus is on Modern C++ demonstrating the benefit
of using the language features of C++11, C++14, and
even C++17. As a result the general understanding
of templates will be improved and generic code
might become more helpful and less surprising.
Outline: We go through the standard template
topics (function templates, class templates, non-
type templates, specialization and other tricky
basics) and spice them with the modern language
feature to do up-to-date template programming.
Then special modern features come into play: move
semantics, variadic tempates, fold expressions
(C++17), class template argument deduction
(C++17). Finally some special consequences:
polymorphism with templates (including using
std:variant<>), type utilities, SFINAE, and a bit on
metaprogramming.

Sun 14 Mar 10:00-18:00
Title Oral Session
Presenter Mateusz Pusz

2021

C++ Concepts: Constraining C++
Templates in C++20 and Before

MATEUSZ PUSZ1

1 Epam Systems | Train IT, Gdansk, Poland

C++ Concepts is one of the most significant and
long-awaited features of C++20. They improve
template interfaces by explicitly stating the compile-
time contract between the user and the architect
of the code, which limits the number of compilation
errors and make them much more user-friendly
when they occur. The workshop will describe this
C++20 feature, its similarities and differences
from Concepts TS (provided with gcc-7), and will
present ways to benefit from a significant part of
the functionality in current production C++ projects
with the usage of “legacy” C++11 features.

28 29

SESSIONS

Sun 14 Mar 10:00-18:00
Title Oral Session
Presenter Peter Sommerlad

2021

Good Modern C++ Design and
Practices

PETER SOMMERLAD1

1 Better Software: Consulting, Training, Reviews,
Wollerau, Switzerland

This workshop is trying to simplify your use of C++.
We have many great rule sets to chose from, some
partially outdated, like Scott Meyers 3rd edition,
some futuristic, like the C++ core guidelines. While
working on the AUTOSAR C++ and new MISRA
C++ guidelines I found that many of the guidelines
forbid things without giving actual guideline on
how to do things and when to deviate. Also many
talks on C++ explain the modern features and
show how they work, but only few put things
into context and show what to give up and how
things combine sanely. I am guilty of that in the
past as well, e.g., with my constexpr compile time
computation talks at ACCU. This full day workshop
is the result of thinking about that. It won’t show
C++20 feature by feature, but gives a coherent set
of practices to improve your design and code using
existing standard C++ features where they give
you benefits. We will cover the following topics: *
designing function interfaces in a way that they are
easy to call correctly and hard to call incorrectly *
how to report function contract violations (at least
5 different ones) and their individual benefits and
liabilities, so you can make a conscious choice. *
what parameter passing style and return value style
works best under what conditions * how to create
(parameter) type wrappers to avoid passing wrong
arguments * class design for simple value wrappers
to improve function interfaces * mix-in strategies for
functionality and operators, so that creating value
wrappers is simpler * provide an overview of class
styles, e.g., value, manager, oo-bases and show
how to select from the rules for special member
functions * take a look at the lesser known C++11
feature of ref-qualified member functions and
show why and when to use them for your member
functions If you are brave enough, bring your own
examples that we can look at and discuss where
they are perfect and where they could be improved.
Otherwise, we will take a look at potential bugs in
the C++ standard library design.

2021
CONFERENCE
PROGRAMME

30 31

Tuesday 2021-03-09

Modern C++
Idioms
Mateusz Pusz

Good Modern
C++ Design
and Practices
Peter
Sommerlad

10:00

Building and
Packaging
Modern C++
Adrian Ostrowski
Piotr Gaczkowski

09:00 Keynote: Technical Agile Coaching with the Samman method Emily Bache Track A

10:30 BREAK

11:00 How C++20 changes
the way we write code
Timur Doumler
Track A

Dynamic Polymorphism
with Code Injection and
Metaclasses
Sy Brand
Track B

This Videogame
Developer Used the
STL and You’ll Never
Guess What
Happened Next
Mathieu Ropert Track C

Drawing for IT
Architects
Filip Van Laenen
Track D

What does the linker
actually do for us?
CB Bailey
Andy Balaam
Track E

13:00 BREAK

14:00 Safer C++: MISRA-
C++:202x rules and
beyond
Peter Sommerlad
Track A

The C++ rvalue
lifetime disaster
Arno Schödl
Track B

Typical Type Typos
Amir Kirsh
Track C

TBD
Track D

How technical debt
can kill your business.
How F1 teams crack
technical debt.
Luca Minudel Track E

16:00 A Practical Introduction
to C++20’s Modules
Hendrik Niemeyer
Track A

Future of testing
with C++20
Kris Jusiak
Track B

Reflection: Compile-
time Introspection
of C++
Andrew Sutton
Track C

You can’t test this?
Hammertime!
Frances Buontempo
Steve Love
Track D

Refactoring
Superpowers: make
your IDE do your work,
faster and more safely
Clare Macrae
Track E

15:30 BREAK

ACCU 101:
Early Career Day
Gail Ollis
Kevlin Henney
Giovanni Asproni
Chris Oldwood
Roger Orr, Jon Skeet
Arjan van Leeuwen
Jez Higgins

12:00 Better Code Sean Parent

Wednesday 2021-03-10

32 33

09:00 Keynote: It Depends... Kevlin Henney Track A

11:00 An Overview of
Standard Ranges
Tristan Brindle
Track A

Generic
Programming
without (writing
your own) Templates
Tina Ulbrich
Track B

Windows, macOS
and the Web:
Lessons from
cross-platform
development at
think-cell
Sebastian Theophil
Track C

Contrasting
test automation
and BDD: an
“interactions over
tools” perspective
Seb Rose
Track D

Interesting
Characters
Andy Balaam
Track E

12:30 BREAK

14:00 What use is a
confined user
shell?
Alan Griffiths
Track D

PowerShell for
the Curious
Chris Oldwood
Track E

14:00-14:20
C++ UNIverse
Victor Ciura

14:45-15:05
The Point Challenge
- returning different
types for the same
operation Amir Kirsh

15:10-15:30
Example mapping:
a structured,
collaborative
discovery technique
Seb Rose Track A

14:00-14:20
Building portable C++
packages: the Curse
of Abundance
Piotr Gaczkowski

14:20-14:40
Building portable C++
packages: the bliss
of unification
Adrian Ostrowski

14:45-15:05

Testing your tests
with code coverage
Richard Wallman

15:10-15:30
Tools that spark joy:
lessons learned from the
Rust ecosystem that can
be adopted elsewhere
Lotte Steenbrink TrackB

15:30

BREAK

Thursday 2021-03-11

10:30 BREAK

14:20-14:40
Programming as
a sport – what do
you mean?
Ahto Truu

14:45-15:05
Services evolution:
required is forever
Natalia Pryntsova

15:10-15:30
Handling large
volumes of immutable
structured data with
ClickHouse Jim Hague
Track C

12:45 Undo Software Lunch & Learn Webinar: Time Travel Debugging - it’s time to Debug Different Chris Croft-White Track A

34 35

Value of a Good
API
Bob Steagall
Track A

Cross-Platform
Pitfalls and How
to Avoid Them
Erika Sweet
Track B

Frictionless
Allocators
Alisdair Meredith
Track C

Modern Linux C++
debugging tools -
under the covers
Greg Law
Dewang Li
Track D

Thinking in
Immediate: ImGUI
Zhihao Yuan
Track E

 Friday 2021-03-12

Keynote: Who are they, and what do they want?
Patricia Aas Track A

10:30 BREAK

11:00 AddressSanitizer
on Windows
Victor Ciura
Track A

Playing with
Security
Charles Weir
Track B

Contrasting
Hideous
Mathematics for the
software engineer
Patrick Martin
Track C

API Vulnerabilties
and What to Do
About Them
Eoin Woods
Track D

From Iterators
To Ranges — The
Upcoming Evolution
Of the Standard
Library
Arno Schoedl
Track E

12:30 BREAK

The Business

16:00

14:00 JavaScript the
Grumpy Parts
Rob Richardson
Track A

Rethinking the Way
We Do Templates
in C++
Mateusz Pusz
Track B

Modern C and what
we can learn from it
Luca Sas
Track C

Hi, I’m Dom, and I
Have Depression!
Dom Davis
Track D

How to build digital
signatures from
hash functions
Ahto Truu
Track E

15:30 BREAK

16:00 C++ Concepts
vs Rust Traits vs
Haskell Typeclasses
vs Swift Protocols
Conor Hoekstra
Track A

Lakos’20: The “Dam”
Book is Done!
John Lakos
Track B

C++11/14 at scale
- what have we
learned?
Vittorio Romeo
Track C

Redesigning
Legacy Systems
- Strategies that
work / Lessons
learned
Pete Muldoon
Track D

API Vulnerabilties
and What to Do
About Them
Eoin Woods
Track E

09:00

20:00 Echoborg Entertainment I am Echoborg

36 37

Saturday 2021-03-13

Concurrency in
C++20 and beyond
Anthony Williams
Track A

Processing Decimal
Values
Dietmar Kühl
Track B

C++20 + Lua =
Flexibility
James Pascoe
Track C

C++20 Templates
- The next level:
Concepts and more
Andreas Fertig
Track D

Building and
organising a multi-
platform development
code base
Jim Hague
Track E

11:00 BREAK
11:30 Threads

Considered
Harmful
Lucian Radu
Teodorescu
Track A

Let’s look at
lambdas
Roger Orr
Track B

C++ and Linear
Algebra
Guy Davidson
Track C

Limited work-
in-progress for
developers
Dmitry Kandalov
Track D

A tour of Julia
Erik Engheim
Track E

14:30

13:00 BREAK

09:30

std::jthread - I told
you concurrency
is tricky
Nico Josuttis
Track A

Retiring the Singleton
Pattern, Concrete
Suggestions for
What to Use Instead
Pete Muldoon
Track B

A Study of Plugin
Architectures
for supporting
Extensible Software
Mike Shah
Track C

Naming is Hard:
Let’s Do Better
Kate Gregory
Track D

Write Once, Run
Mobile
Phil Nash
Track E

16:00 BREAK
16:30 Keynote: Better Code: Relationships

Sean Parent Track A

Sunday 2021-03-14

10:00 Modern C++
Template
Programming
Nico Josuttis

C++ Concepts:
Constraining C++
Templates in C++20
and Before
Mateusz Pusz

Good Modern
C++ Design and
Practices
Peter Sommerlad

38 39

2021
CONFERENCE
SPEAKERS

U D B : D E B U G D I F F E R E N T

Time's Up
for Bugs
Time Travel Debugging takes the guesswork
out of debugging. Capture and replay code
execution history to get instant visibility into
what your program just did and why.

 Fix bugs faster

 Uncover root cause with 100% certainty

 Understand codebases you didn’t write

undo.io/udb

3 0 - D AY F
R E E T

R I A
L

40 41

SPEAKERS SPEAKERS

Bache, Emily

Emily Bache is a Technical Agile Coach with
ProAgile. She helps teams to improve their
coding and testing skills, including Test-Driven
Development. Emily lives in Gothenburg, Sweden,
but is originally from the UK. She is the author of
“The Coding Dojo Handbook” and often speaks at
international conferences. twitter: @emilybache
blog: http://coding-is-like-cooking.info/

Fullday Workshop: Getting High Regression Test
Coverage Quickly using Approval Testing

Bailey, CB

CB is a software developer at Bloomberg. CB works
in Bloomberg Application Services where they help
application developers easily write and maintain
software than integrates and communicates in

robust and efficient ways. CB’s previous career in
software has included roles in such diverse areas
as web technology, business intelligence, data
warehousing, defence and radar. CB understands
the importance of optimal software practices and
so has a keen interest in source control systems
and best practices surrounding their use. CB is a
Git user, advocate and contributor and relishes the
opportunity to slice through knotty problems with
their git-fu and to teach others how to do the same.

Session: What does the linker actually do for us?

Balaam, Andy

Andy Balaam loves code, and loves talking about
code. His blog, articles and open source projects
can be found at http://artificialworlds.net and his
videos are at http://youtube.com/ajbalaam

Session: What does the linker actually do for us?

Balaam, Andy

Andy is happy as long as he has a programming
language and a problem. He finds over time he
has more and more of each. You can find his open
source projects at artificialworlds.net or contact
him on mail@artificialworlds.net

Session: Interesting Characters

Brand, Sy

Sy is Microsoft’s C++ Developer Advocate. Their
background is in compilers and debuggers for
embedded accelerators, but they’re also interested
in generic library design, metaprogramming,

functional-style C++, undefined behaviour, and
making our communities more welcoming and
inclusive.

Session: Dynamic Polymorphism with Code
Injection and Metaclasses

Brindle, Tristan

Tristan is a freelance developer, C++ trainer and
BSI committee member based in London. He’s the
author of NanoRange, a C++17-compatible Ranges
implementation, and lead tutor for C++ London
Uni, a not-for-profit organisation offering free
weekly C++ classes for students in London and
around the world.

Session: An Overview of Standard Ranges

Buontempo, Frances

Frances Buontempo is currently editor of the
ACCU’s Overload magazine and is a programmer by
profession. She has a BA in maths and philosophy,
an M.Sc. in Pure Mathematics, and a PhD in data
mining to predict how toxic organic chemicals
might be. Between then and now, she has worked
in various companies in Leeds and London with a
finance focus or as a consultant. She has talked and
written about various ways to program your way
out of a paper bag, providing a gentle introduction
to some machine learning approaches, while trying
to keep up to date with new techniques. She wrote
these up in a book [https://pragprog.com/book/
fbmach/genetic-algorithms-and-machinelearning-
for-programmers]

Session: You can’t test this? Hammertime!

Ciura, Victor

Victor Ciura is a Principal Engineer at CAPHYON,
Technical Lead on the Advanced Installer team and
a Microsoft MVP (Developer Technologies). He’s
a regular guest at Computer Science Department
of his Alma Mater, University of Craiova, where he
gives student lectures & workshops on using C++
STL Algorithms. Since 2005, he has been designing
and implementing several core components and
libraries of Advanced Installer. Currently, he spends
most of his time working with his team on improving
and extending the repackaging and virtualization
technologies in Advanced Installer IDE, helping
clients migrate their traditional desktop apps to the
modern Windows application format: MSIX. One of
his “hobbies” is tidying-up and modernizing the aging
codebase of Advanced Installer and has been known
to build tools that help this process: Clang Power
Tools More details: @ciura_victor & https://ciura.ro

Session: C++ UNIverse

Session: AddressSanitizer on Windows

Davidson, Guy

Guy Davidson has been developing in C++ for
over 30 years and writing games for nearly 40.
He is the Principal Coding Manager at the UK’s
largest games studio, Creative Assembly, makers of
Total War, Alien:Isolation, Halo Wars 2 and others,
where he helps good programmers become better
programmers. He has been there for 20 years and
shows no signs of slowing down. He is the coauthor
of the linear algebra library proposal, as well as the
audio library proposal and the 2D graphics library
proposal, among others. He hopes to bring HMI
to the standard and works with SG13 and SG14 to
achieve this.

Session: C++ and Linear Algebra

Davis, Dom

Dom Davis is a veteran of The City and a casualty of
The Financial Crisis. Not content with bringing the
world to its knees he then went off to help break
the internet before winding up in Norfolk where
he messes about doing development and devops.
Dom has been writing code since his childhood
sometime in the last millennium – he hopes some
day to become good at it. Dom is an enthusiastic and
impassioned speaker [read: he gabbles] who uses
a blend of irreverent sarcasm and flippant humour
to bring complex subjects to a broad audience.
Whether or not they understand him is up for
debate, but he likes to believe they do.

Session: Hi, I’m Dom, and I Have Depression!

Doumler, Timur

Timur Doumler is a C++ developer specialising in
audio and music technology, active member of the
ISO C++ committee, and part of the includecpp.org
team. He is passionate about building communities,
clean code, good tools, and the evolution of C++.

Session: How C++20 changes the way we write code

Engheim, Erik

Erik Engheim has been programming for the last
two decades in a variety of programming languages
primarily C/C++ but also Java, C#, Objective-C
and Swift. He is the author of the “Getting Started
with Julia” video course on the new programming
language Julia used in high performance and
scientific computing. He also has a passion for

crypto currencies, UX design, space exploration,
green technologies, robotics and micro controllers.
Erik has worked in a variety of industries: Oil & Gas,
Fintech, Video conferencing and IT consulting.

Session: A tour of Julia

Ertsås, Martin

Martin Ertsås is a software developer working for
Cisco Systems in Norway on their Telepresence
Hardware Endpoints. His main interests are C++,
Linux, Security, Embedded Systems, and Developer
Happiness. Martin enjoys digging through new
code to unravel how it works, or spending time
improving a tool or process to increase the
happiness and productivity of those around him.

Fullday Workshop: Creating a sandbox for you
Linux Application

Fertig, Andreas

Andreas Fertig is the CEO of Unique Code GmbH,
which offers training and consulting for C++
specialized in embedded systems. He worked for
Philips Medizin Systeme GmbH for ten years as
a C++ software developer and architect focusing
on embedded systems. Andreas is involved in the
C++ standardization committee. He is a regular
speaker at conferences internationally. Textbooks
and articles by Andreas are available in German
and English. Andreas has a passion for teaching
people how C++ works, which is why he created
C++ Insights (cppinsights.io).

Session: C++20 Templates - The next level:
Concepts and more

Gaczkowski, Piotr

Music and automation enthusiast. Focused on
efficiency and effectiveness. Experienced in
management, programming, and DevOps. Enjoys
building simple solutions to human problems.
Writes occasionally at https://doomhammer.
info. Speaks of himself in the third person when
required. Never without headphones around. Rarely
without sunglasses.

Session: Building portable C++ packages: the
Curse of Abundance

Fullday Workshop: Building and Packaging
Modern C++

Gregory, Kate

Kate Gregory has been using C++ for over thirty
years. She writes, teaches, mentors, codes, and

42 43

SPEAKERS SPEAKERS

leads projects, primarily in C++. Kate is a Visual
C++ MVP, has written over a dozen books, and
speaks at conferences and user groups around the
world. Kate develops courses on C++, Visual Studio,
and Windows programming for Pluralsight, is
active on over a dozen StackExchange sites, blogs
infrequently, and is happy to be part of C++ Twitter
and the #include Discord server.

Session: Naming is Hard: Let’s Do Better

Griffiths, Alan

Alan is an experienced and effective proponent of
the craft of software development. Interested in
development processes, tools, design and coding
techniques. He has a BSC in Mathematics and
has published articles in ACCU’s Overload and C
Vu, C/C++ Users Journal, Java Report, and EXE.
Contributor to “97 Things Every Programmer
Should Know”. His expertise covers a range of
programming languages, tools and platforms.
Although he has used many other programming
languages over the years, he keeps returning
to C++. Alan is leading a team of open source
developers on “Mir” (a new Linux display server
- https://mir-server.io) and working with “snaps”
(a way of packaging applications for confinement
- https://snapcraft.io). He has been Chair of the
ACCU and a member of the BSI C++ Panel.

Session: What use is a confined user shell?

Hague, Jim

Jim learnt C from first edition K&R, bought the first
edition of The C++ Programming Language when
it first appeared, and hasn’t stopped using either
since. This has taken him over time through all sorts
of environments, from JVM internals to air traffic
control. He is currently nesting in the DNS world,
and running a Code Club in his spare time.

Session: Building and organising a multi-platform
development code base

Session: Handling large volumes of immutable
structured data with ClickHouse

Henney, Kevlin

Kevlin is an independent consultant, trainer,
reviewer and writer. His development interests are
in programming, people and practice. He has been
a columnist for various magazines and web sites, a
contributor to open source software and a member
of more committees than is probably healthy (it has
been said that “a committee is a cul-de-sac down
which ideas are lured and then quietly strangled”).

He is co-author of two volumes in the Pattern-
Oriented Software Architecture series and editor
of 97 Things Every Programmer Should Know and
the forthcoming 97 Things Every Java Programmer
Should Know. blog: https://medium.com/@
kevlinhenney

Session: Keynote: It Depends...

Hoekstra, Conor

Conor Hoekstra is a Senior Library Software
Engineer at NVIDIA working on the RAPIDS team.
He is extremely passionate about programming
languages, algorithms and beautiful code. He is
the founder and organizer of the Programming
Languages Virtual Meetup and he has a YouTube
channel.

Session: C++ Concepts vs Rust Traits vs Haskell
Typeclasses vs Swift Protocols

Josuttis, Nico

Nicolai Josuttis is well known in the programming
community because he not only speaks and writes
with authority (being the (co-)author of the world-
wide best sellers The C++ Standard Library (www.
cppstdlib.com), C++ Templates (www.tmplbook.
com), C++17 - The Complete Guide (www.cppstd17.
com), and SOA in Practice), but is also an innovative
presenter, having talked at various conferences
and events. He is an independent system architect,
technical manager, author, and consultant. He
designs mid-sized and large software systems
for the telecommunications, traffic, finance, and
manufacturing industries.

Session: std::jthread - I told you concurrency is
tricky

Fullday Workshop: Modern C++ Template
Programming

Jusiak, Kris

Kris is a Senior Software Engineer passionate
about programming and who has worked in
different industries over the years including
telecommunications, games and most recently
finance for Quantlab Financial, LLC. He has an
interest in modern C++ development with a focus
on performance and quality. He is an open-source
enthusiast with multiple open-source libraries
where he uses template meta-programming
techniques to support the C++ rule - “Don’t pay
for what you don’t use” whilst trying to be as
declarative as possible with a help of domain-
specific languages. Kris is also a keen advocate of

extreme programming techniques, Test/Behavior
Driven Development and truly believes that ‘the
only way to go fast is to go well!’.

Session: Future of testing with C++20

Kandalov, Dmitry

Dmitry has been programming since DOS times.
He spent the last 15 years or so in Java lands most
recently working with server-side Kotlin.

Session: Limited work-in-progress for developers

Kirsh, Amir

C++ lecturer at the Academic College of Tel-Aviv-
Yaffo and at Tel-Aviv University. Previously the Chief
Programmer at Comverse. Expert in C++, software
design and development in general.

Session: The Point Challenge - returning different
types for the same operation

Session: Typical Type Typos

Kühl, Dietmar

Dietmar Kühl is a senior software developer at
Bloomberg L.P. working on the data distribution
environment used both internally and by enterprise
installations at clients. Before joining Bloomberg he
has done mainly consulting for software projects
in the finance area. He is a regular attendee of the
ANSI/ISO C++ standards committee, presents
at conferences, and he used to be a moderator
of the newsgroup comp.lang.c++.moderated. He
frequently answers questions on Stackoverflow.

Session: Processing Decimal Values

Lakos, John

John Lakos, author of Large-Scale C++ Software
Design, serves at Bloomberg LP in New York
City as a senior architect and mentor for C++
Software Development world-wide. He is also
an active voting member of the C++ Standards
Committee’s Evolution Working Group. Previously,
Dr. Lakos directed the design and development
of infrastructure libraries for proprietary analytic
financial applications at Bear Stearns. For 12
years prior, Dr. Lakos developed large frameworks
and advanced ICCAD applications at Mentor
Graphics, for which he holds multiple software
patents. His academic credentials include a Ph.D. in
Computer Science (‘97) and an Sc.D. in Electrical
Engineering (‘89) from Columbia University. Dr.
Lakos received his undergraduate degrees from

MIT in Mathematics (‘82) and Computer Science
(‘81). His new book, the first volume of which is
entitled Large-Scale C++ — Volume I: Process and
Architecture (2020), is now available from Pearson
Education.

Session: Lakos’20: The “Dam” Book is Done!

Law, Greg

Greg is the co-founder and CTO of Undo. He has
over 20 years’ experience in the software industry
and has held development and management roles
at companies including the pioneering British
computer firm Acorn, as well as fast-growing start
ups, NexWave and Solarflare. It was at Acorn that
Greg met Julian and on evenings and weekends,
they invented the core technology that would
eventually become UndoDB. From the beginnings
in his garden shed, Greg led Undo to a 50-person
company based in Cambridge and San Francisco,
until in 2018 he became full-time CTO. Greg holds
a PhD from City University, London and was
nominated for the 2001 British Computer Society
Distinguished Dissertation Award. He lives in
Cambridge, UK with his wife and two children. In his
spare time, Greg catches up on email.

Session: Modern Linux C++ debugging tools -
under the covers

Li, Dewang

DeWang is a Solutions Architect at Synopsys’s
Software Integrity Group. He is passionate about
making source code more robust and secure
through static analysis and other technologies.
DeWang actively works with the world’s top
programmers in Silicon Valley, including at places
like Amazon AWS, Tesla, and nVidia. He believes
source code is a core asset, and teaming up with
programmers to ensure quality, security, and
maintainability is a noble goal.

Session: Modern Linux C++ debugging tools -
under the covers

Love, Steve

Steve Love has never written a compiler, but once
wrote a tiny operating system of which he was very
proud at the time. He still considers himself to be
a programmer, despite spending much of his time
talking about testing and deployment instead of
actually writing code.

Session: You can’t test this? Hammertime!

44 45

SPEAKERS SPEAKERS

Macrae, Clare

Clare is an independent consultant, helping teams
work sustainably and efficiently to test and refactor
legacy and hard-to-test code. She has worked in
software development for over 30 years, and in
C++ and Qt for 20 years, and is now branching out
to other languages. Since 2017, Clare has used her
spare time to work remotely with Llewellyn Falco
on https://github.com/approvals/ApprovalTests.
cpp[ApprovalTests.cpp], to radically simplify testing
of legacy code. She has enjoyed this so much that
in 2019 she set up Clare Macrae Consulting Ltd,
to focus even more on helping others work with
legacy code. Before this, Clare was a Principal
Scientific Software Engineer at Cambridge
Crystallographic Data Centre. She is the original
author of their popular C++ and Qt-based 3D
crystal structure visualisation program https://www.
ccdc.cam.ac.uk/mercury/[Mercury].

Session: Refactoring Superpowers: make your IDE
do your work, faster and more safely

Martin, Patrick

Patrick’s github repo was classified using a machine
learning gadget as belonging to a ‘noble corporate
toiler’. He can’t top that.

Session: Hideous Mathematics for the software
engineer

Meredith, Alisdair

Alisdair Meredith is a software developer at
BloombergLP in New York, and a previous chair
of the C++ Standard Committee Library Working
Group He has been an active member of the C++
committee for almost two decades, and by a lucky
co-incidence his first meeting was the kick-off
meeting for the project that would become C++11,
and also fixed the contents of the original library
TR. He is currently working on the BDE project,
BloombergLP’s open source libraries that offer
a foundation for C++ development, including a
standard library implementation supporting the
polymorphic allocator model that was ultimately
adopted by C++17.

Session: Frictionless Allocators

Minudel, Luca

Luca Minudel is a Lean-Agile Coach & Trainer, and a
Transformation lead, with 20+ years of experience
in professional software delivery and digital product
development, most of them with Lean and Agile. He
is passionate about agility, lean, complexity science,

and co-creation. He contributed to the adoption of
lean and agile practices by Ferrari’s F1 racing team.
For ThoughtWorks he delivered training, coaching,
assessments and organisational transformations
in top-tier organisations in Europe and the United
States. He worked as Head of Agility, Agile
Transformation Lead, Lean/Agile Practice Lead, and
as Lean/Agile Coach in companies such as HSBC,
Lloyds, LexisNexis. Luca is the founder and CEO at
SmHarter.com, a company that helps organisations
turn their way of working into their competitive
advantage.

Session: How technical debt can kill your business.
How F1 teams crack technical debt.

Muldoon, Pete

Pete Muldoon has been using C++ since 1991. Pete
has worked in Ireland, England and the USA and
is currently employed by Bloomberg. A consultant
for over 20 years prior to joining Bloomberg, Peter
has worked on a broad range of projects and code
bases in a large number of companies both tech
and finance. Such broad exposure has, over time,
shown what works and what doesn’t for large scale
engineering projects. He’s a proponent of elegant
solutions and expressive code.

Session: Retiring the Singleton Pattern, Concrete
Suggestions for What to Use Instead

Session: Redesigning Legacy Systems - Strategies
that work / Lessons learned

Nash, Phil

Phil is the author of the C++ test framework,
Catch2, and composable command line parser,
Clara and has recently taken an interest in Kotlin/
Native, too. As Developer Advocate at JetBrains
he’s involved with CLion, AppCode and ReSharper
C++. More generally he’s an advocate for good
testing practices, TDD and using the type system
and functional techniques to reduce complexity
and increase correctness. He’s previously worked
in Finance and Mobile as well as an independent
consultant and coach specialising in TDD on iOS.

Session: Write Once, Run Mobile

Niemeyer, Hendrik

Hendrik is a System Architect and works on the
software architecture for machine learning and
big data applications. His favorite programming
languages, in which he also has the most
experience, are C++ and Rust. He described
himself as a “learning enthusiast” who always gets

absorbed in trying out new things.

Session: A Practical Introduction to C++20’s
Modules

Oldwood, Chris

Chris is a freelance programmer who started out
as a bedroom coder in the 80’s writing assembler
on 8-bit micros. These days it’s enterprise grade
technology in plush corporate offices. He also
commentates on the Godmanchester duck race
and can be easily distracted via gort@cix.co.uk or
@chrisoldwood.

Session: PowerShell for the Curious

Orr, Roger

Roger has many years of experience in IT, using
a variety of languages and platforms, working
for a number of different companies over the
years, mostly in the financial sector. His recent
work has mostly been in C++, on both Windows
and Linux. Roger is one of the organisers of
this conference and also runs the Code Critique
column in ACCU’s “CVu” magazine. He is chair
of the UK C++ panel, has represented the UK at
C++ ISO standards meetings since 2010, and is
a member of the ‘Direction Group’, a five person
group that recommends priorities for the ISO C++
standardisation committee.

Session: Let’s look at lambdas

Ostrowski, Adrian

Modern C++ enthusiast, interested in the newest
language standards and development of
highquality code. Previously promoting music
bands as a member of the board for the Kompresor
foundation, as well as C++ at EPAM as a member
of the board for its C++ Community. Previously
working on a commodity exchange’s trading
system, currently working on the architecture
of Intel and Habana’s integration with machine
learning frameworks. Fullday Workshop: Building
and Packaging Modern C++

Session: Building portable C++ packages: the bliss
of unification

Parent, Sean

Sean Parent is a senior principal scientist and
software architect for Adobe’s mobile digital
imaging group and Photoshop. Sean has been
at Adobe since 1993 when he joined as a senior
engineer working on Photoshop and later managed

Adobe’s Software Technology Lab. In 2009 Sean
spent a year at Google working on Chrome OS
before returning to Adobe. From 1988 through
1993 Sean worked at Apple, where he was part
of the system software team that developed the
technologies allowing Apple’s successful transition
to PowerPC.

Session: Keynote: Better Code: Relationships

Fullday Workshop: Better Code

Pascoe, James

James Pascoe is a Principal Software Team Leader
at Blu Wireless in Bristol. Blu Wireless builds
mmWave mobile wireless IP links for high-speed
transport and fixed wireless applications. At Blu
Wireless, James is responsible for the software that
exists above the MAC, primarily, the Blu Wireless
Linux driver and the mobility software agent that
makes decisions about which access point to
connect to and when. Prior to Blu Wireless, James
was a Senior Engineer at Intel where he worked on
the Android graphics stack. Prior to Intel, James
held various hardware and software positions at
STMicroelectronics and prior to ST, James was a
Post Doctoral Research Fellow at the Department
of Math and Computer Science at Emory University
in Atlanta, GA. James hold a first class degree and
a PhD from the University of Reading (both in
Computer Science) and an MBA (with distinction)
from Warwick University.

Session: C++20 + Lua = Flexibility

Polce, Paolo

Paolo Polce has 20+ years of professional software
development experience across industries
including: Formula 1 Motorsport, Pharmaceutical,
Media Publishing and more. His focus is system
simplification, continuous refactoring and delivery.
Paolo works at “Simul Works” (http://www.
simulworks.com)

Session: How technical debt can kill your business.
How F1 teams crack technical debt.

Pryntsova, Natalia

Natalia Pryntsova is a team leader in Bloomberg
L.P. with particular interest in distributed systems
design. Before joining Bloomberg she did software
consulting work on variety of projects in finance
and has seen both good and bad architectural
practices in action. Day to day she mostly uses
Python and C++ but still secretly admires C#.

Session: Services evolution: required is forever

46 47

SPEAKERS SPEAKERS

Pusz, Mateusz

A software architect, chief engineer, and security
champion with more than 15 years of experience
in designing, writing and maintaining C++ code for
fun and living. C++ consultant, trainer, conference
speaker, and evangelist focused on Modern C++.
His main areas of interest and expertise are code
performance, low latency, stability, and security.
Mateusz worked at Intel for 13 years, and now
he is the head of the C++ Competency Center
at EPAM Systems. He is also a founder of Train
IT that provides dedicated C++ trainings and
consultant services to corporations. Mateusz is a
contributor and an active voting member of the
ISO C++ Committee (WG21) where, together with
the best C++ experts in the world, he shapes the
future of the C++ language. He is also a co-chair
of WG21 Study Group 14 (SG14) responsible for
driving performance and low latency subjects in the
Committee. In 2013 Mateusz won “Bench Games
2013” – worldwide competition in the C++ language
knowledge.

Fullday Workshop: C++ Concepts: Constraining
C++ Templates in C++20 and Before

Session: Rethinking the Way We Do Templates in
C++

Fullday Workshop: Modern C++ Idioms

Richardson, Rob

Rob Richardson is a software craftsman building
web properties in ASP.NET and Node, React and
Vue. He’s a Microsoft MVP, published author,
frequent speaker at conferences, user groups, and
community events, and a diligent teacher and
student of high quality software development. You
can find this and other talks on https://robrich.
org/presentations and follow him on twitter at @
rob_rich.

Session: JavaScript the Grumpy Parts

Romeo, Vittorio

Vittorio Romeo (B.Sc. Computer Science) has
been a Software Engineer at Bloomberg for more
than 3 years, working on mission-critical company
C++ infrastructure and providing Modern C++
training to hundreds of fellow employees. He began
programming around the age of 8 and quickly
became a C++ enthusiast. Vittorio created several
open-source C++ libraries and games, published
many video courses and tutorials, and actively
participates in the ISO C++ standardization process.
He is also an active member of the C++ community

and has an ardent desire to share his knowledge
and learn from others: he presented more than 20
times at international C++ conferences (including
CppCon, C++Now, ++it, ACCU, C++ On Sea, C++
Russia, and Meeting C++), covering topics of
various nature. Vittorio maintains a website with
advanced C++ articles and a YouTube channel
featuring wellreceived modern C++11/14 tutorials.
Lastly, he’s active on StackOverflow, taking great
care in answering interesting C++ question (60k
reputation). When he’s not writing code, Vittorio
enjoys weightlifting and fitness-related activities,
competitive/challenging computer gaming and sci-
fi movies/TV-series.

Session: C++11/14 at scale - what have we learned?

Ropert, Mathieu

French C++ expert working on (somewhat)
historical video games. Decided to upgrade his
compiler once and has been blogging about
build systems ever since. Past speaker at CppCon,
Meeting C++ and ACCU. Used to run the Paris C++
User Group. Currently lives in Sweden.

Session: This Videogame Developer Used the STL
and You’ll Never Guess What Happened Next

Rose, Seb

Consultant, coach, trainer, analyst, and developer
for over 30 years. Seb has been involved in the
full development lifecycle with experience that
ranges from architecture to support, from BASIC
to Ruby. He’s a BDD advocate with SmartBear,
helping people integrate all three practices of
BDD into their development process and ensuring
that appropriate tool support is available. Regular
speaker at conferences and occasional contributor
to software journals. Co-author of the BDD Books
series “Discovery” and “Formulation” (Leanpub),
lead author of “The Cucumber for Java Book”
(Pragmatic Programmers), and contributing author
to “97 Things Every Programmer Should Know”
(O’Reilly). He blogs at cucumber.io/blog and tweets
as @sebrose.

Session: Contrasting test automation and BDD: an
“interactions over tools” perspective

Session: Example mapping: a structured,
collaborative discovery technique

Sas, Luca

Luca Sas is a Core Systems Engineer at Creative
Assembly who has been coding for almost
a decade and is passionate about system

architecture and low level programming. Some
of his previous work includes mobile apps with
some of the biggest NGOs in Romania and
video game development. In Romania he was a
national champion at programming contests and
olympiads where he is now a judge. He enjoys
attending conferences and talking to developers
about their experience and learning about ways to
improve software design as well as mentoring new
programmers and giving talks. Previously he gave
talks at programming events in Romania and the
University of Leeds, and ACCU 2019.

Session: Modern C and what we can learn from it

Schoedl, Arno

Arno Schödl, Ph.D. Founder & CTO Arno is
responsible for the design, architecture and
development of all our software products. He
oversees think-cell’s R&D team, Quality Assurance
and Customer Care. Before founding think-cell,
Arno worked at Microsoft Research and McKinsey.
Arno studied computer science and management
and holds a Ph.D. from the Georgia Institute of
Technology with a specialization in Computer
Graphics.

Session: The C++ rvalue lifetime disaster

Session: From Iterators To Ranges — The
Upcoming Evolution Of the Standard Library

Shah, Mike

Mike currently is an Assistant Teaching Professor
at Northeastern University. Along with his research
on performance, he also consults as a Senior 3D
Graphics Engineer on a variety of multimedia
projects. Mike discovered computer science at the
age of 13 when googling ”how do I make games”.
From that google search, Mike has worked as a
freelance game developer, worked in industry for
Intel, Sony PlayStation, Oblong Industries, and
researched at The Ohio Supercomputer Center
to name a few. Mike cares about building tools
to help programmers monitor and improve the
performance of realtime applications – especially
games.

Session: A Study of Plugin Architectures for
supporting Extensible Software

Sommerlad, Peter

Peter Sommerlad is a consultant and trainer for
Safe Modern C++ and Agile Software Engineering.
Peter was professor at and director of IFS Institute
for Software at FHO/HSR Rapperswil, Switzerland

until February 2020. Peter is co-author of POSA
Vol.1 and Security Patterns. He inspired the C++ IDE
Cevelop with a unique C++ feedback, refactoring,
and code modernization experience. Peter is
a member of MISRA-C++, Hillside, ACM, IEEE
Computer Society, ACCU, ISO WG23 and the ISO
WG21 C++ committee.

Fullday Workshop: Good Modern C++ Design and
Practices

Session: Safer C++: MISRA-C++:202x rules and
beyond

Steagall, Bob

Bob Steagall has been working in C++ since
discovering the second edition of “The C++
Programming Language” in a college bookstore
in 1992. The majority of his career has been spent
in medical imaging, where he led teams building
applications for functional MRI and CT-based
cardiac visualization. After a brief detour through
the worlds of DNS and analytics, he’s now working
in the area of distributed stream processing. He
is a voting member of the C++ Standardization
Committee, and has a blog where he occasionally
writes about C++ and related topics. Bob holds BS
and MS degrees in Physics, is an avid cyclist when
weather permits, and lives in fear of his wife’s cats.

Session: The Business Value of a Good API

Steenbrink, Lotte

Lotte Steenbrink is an Embedded Software
Engineer working at Ferrous Systems who has
transitioned from C to C++ to now Rust. In the
past, she has worked on Industrial IoT applications,
networking for constrained devices, and protocol
standardization (IETF). While picking up Rust,
she’s gotten involved in knurling-rs, an open source
project on a mission to improve the embedded Rust
development experience through better tooling. As
a programmer she appreciates seemingly simple
solutions to difficult problems, and as an impatient
human she is fond of tools that support her in
building what she needs and don’t get in the way
otherwise.

Session: Tools that spark joy: lessons learned from
the Rust ecosystem that can be adopted elsewhere

Sutton, Andrew

Andrew Sutton is an owner of Lock3 Software, LLC
where he designs languages, language features,
and works on various compilers. Most of his work is
focused on the C++ programming language.

48 49

SPEAKERS SPEAKERS

Some of Andrew’s current projects include
the GCC implementation of C++ concepts,
designing and implementing static reflection and
metaprogramming for C++ using Clang, and the
design and implementation of new programming
languages. Andrew was formerly a university
professor and taught undergraduate courses on
programming with C++, programming languages,
and compiler design.

Session: Reflection: Compile-time Introspection of
C++

Sweet, Erika

Erika works on the Visual C++ Team at Microsoft.
She likes math and mystery novels. She is currently
working on developer tools to support C++ cross-
platform development.

Session: Cross-Platform Pitfalls and How to Avoid
Them

Teodorescu, Lucian Radu

Lucian Radu Teodorescu has a PhD in programming
languages and is a Software Architect at Garmin.
As hobbies, he is working on his own programming
language and he is improving his Chuck Norris
debugging skills: staring at the code until all the
bugs flee in horror.

Session: Threads Considered Harmful

Theophil , Sebastian

Sebastian Theophil studied Computer Science in
Berlin and Toulouse, and holds a PhD in Computer
Science from Humboldt University of Berlin. He
has been working at think-cell Software since its
founding in 2002, and has recently been working
on porting think-cell to the Mac.

Session: From Iterators To Ranges — The
Upcoming Evolution Of the Standard Library

Session: Windows, macOS and the Web: Lessons
from cross-platform development at think-cell

Session: The C++ rvalue lifetime disaster

Truu, Ahto

During his two and a half decades in the ICT
industry, Ahto has worked in hardware installations
and user support, as a software developer and
architect, and as a systems analyst. Currently he is
busy helping Guardtime’s customers preserve the
integrity of their important data. Outside his day

job he coaches Estonia’s team to the high school
students’ programming competitions. He has also
been writing programming columns for the popular
science magazines A&A and Horisont.

Session: How to build digital signatures from hash
functions

Session: Programming as a sport -- what do you
mean?

Ulbrich, Tina

Tina works at Rosen, a service provider in the
oil and gas industry. She writes and maintains
numerical and data processing algorithms for
pipeline inspection data. She highly values simple,
modern and clean code, using the latest language
features. She promotes refactoring, high test
coverage and collaboration between developers.
She also teaches modern C++ in internal tech talks.
Tina holds a university degree in Bio-Mathematics
from the University of Applied Science in Zittau/
Goerlitz. She is an active member of the #include
Discord community.

Session: Generic Programming without (writing
your own) Templates

Van Laenen, Filip

Filip van Laenen started his career at Computas in
the previous millennium, first as a Java developer,
later as a business analyst, IT architect, and various
other project roles. He’s guilty of lots of bad
drawings, but tries to improve himself, and would
like to make the world a better place by helping
others to improve too.

Session: Drawing for IT Architects

Wallman, Richard

Richard has been a developer for several decades,
working on systems in VHDL and Verilog all
the way up to JavaScript. During that time
he’s battled against errors and edge-cases in
many programming languages, and as such
has developed a strong appreciation for solid
development practices. In 2006 he took on his
biggest public project yet - designing and building
the new platform for The Freecyle Network.
Creating a system capable of handling millions of
users and delivering a quarter of a billion emails
every month, but within a non-profit’s budget,
required a ruthless approach towards security,
efficiency and stability. Richard is currently working
for a web-streaming company that handles the live
webcasting of council meetings for UK councils

such as Birmingham and Westminster. Working as
the leader of PHP, JavaScript and C++ teams, he
gets to deal with a variety of day-to-day coding
issues, but it also allows him to cross-pollinate best
practices between teams.

Session: Testing your tests with code coverage

Weir, Charles

Charles Weir is passionate about improving the
security skills of teams of professional software
developers. A researcher at Lancaster University,
he designs interventions to help developers
produce more secure software. His ‘Developer
Security Essentials’ workshops have been used
with development teams in a wide range of
different organisations, and rigorously proven
to have positive effects in every case. Previously
he set up the mobile application development
company, Penrillian, and ran it successfully for 15
years, employing up to thirty people and with a
total turnover well over £30M. Charles also co-
authored the book ‘Small Memory Software’, helped
introduce objectoriented and agile methods to
the UK, and was technical lead for the world’s first
smartphone.

Session: Playing with Security

Williams, Anthony

Anthony Williams is the author of C++ Concurrency
in Action, and a UK-based developer, consultant
and trainer with over 20 years of experience in
C++. He has been an active member of the BSI
C++ Standards Panel since 2001, and is author or
coauthor of many of the C++ Standards Committee
papers that led up to the inclusion of the thread
library in the C++11 Standard. He continues to work
on new facilities to enhance the C++ concurrency
toolkit, both with standards proposals, and
implementations of those facilities. Anthony lives
in the far west of Cornwall, England, where he
currently spends most of his time developing
software for robots.

Session: Concurrency in C++20 and beyond

Woods, Eoin

Eoin Woods is CTO at Endava, where he guides
technical strategy, oversees capability development
and directs investment in emerging technologies.
Eoin is a widely published author in both the
research and industrial communities and a regular
conference speaker, with expertise in software
architecture, software security and distributed
systems.

Session: API Vulnerabilties and What to Do About
Them

Yuan, Zhihao

Zhihao Yuan is an HPC Engineer at SimpleRose
Inc. He participated in standardizing designated
initializers and improved narrowing conversions in
C++20. In the past few months, he enjoyed writing
Python programs in Visual Studio and avoided
configuring another Vim emulation layer. He loves
the Utawarerumono game series so much and is
playing them on PS4 again.

Session: Thinking in Immediate: ImGUI

