
@ciura_victor
Victor Ciura

Senior SW Engineer
Visual C++

December 2022

Chasing Nodes

https://twitter.com/ciura_victor

2022 Victor Ciura | @ciura_victor - Chasing Nodes 2

Ask

Q & A
Ask questions as we go along...

2022 Victor Ciura | @ciura_victor - Chasing Nodes 3

Recap

STL Algorithms - Principles and Practice

“Prefer algorithm calls to hand-written loops”

Scott Meyers, "Effective STL"

2022 Victor Ciura | @ciura_victor - Chasing Nodes 4

Why prefer to use (STL) algorithms?

👉 Goal: No Raw Loops {}

Sean Parent - C++ Seasoning, 2013

2022 Victor Ciura | @ciura_victor - Chasing Nodes 4

Why prefer to use (STL) algorithms?

👉 Goal: No Raw Loops {}

Sean Parent - C++ Seasoning, 2013

Whenever you want to write a for/while loop:

for(int i = 0; i < v.size(); ++i) { … }

2022 Victor Ciura | @ciura_victor - Chasing Nodes 4

Why prefer to use (STL) algorithms?

👉 Goal: No Raw Loops {}

Sean Parent - C++ Seasoning, 2013

Whenever you want to write a for/while loop:

for(int i = 0; i < v.size(); ++i) { … }

Put the Mouse Down and
Step Away from the Keyboard !

Burk Hufnagel

2022 Victor Ciura | @ciura_victor - Chasing Nodes 5

Why prefer to use (STL) algorithms?

Correctness

Fewer opportunities to write bugs like:

iterator invalidation

copy/paste bugs

iterator range bugs

loop continuations or early loop breaks

guaranteeing loop invariants

issues with algorithm logic

2022 Victor Ciura | @ciura_victor - Chasing Nodes 6

Why prefer to use (STL) algorithms?

Code is a liability:

maintenance, people, knowledge, dependencies, sharing, etc.

More code => more bugs, more test units, more maintenance, more
documentation

2022 Victor Ciura | @ciura_victor - Chasing Nodes 7

Why prefer to use (STL) algorithms?

Code Clarity

Algorithm names say what they do

Raw “for” loops don’t (without reading/understanding the whole body)

We get to program at a higher level of abstraction by using well-known verbs

(find, sort, remove, count, transform)

A piece of code is read many more times than it’s modified

Maintenance of a piece of code is greatly helped if all future programmers

understand (with confidence) what that code does

2022 Victor Ciura | @ciura_victor - Chasing Nodes 8

Why prefer to use (STL) algorithms?

Simplicity

Simpler code is more readable code

Understandable and expressive

Usually, shorter means simpler (but not always)

Unsurprising code is more maintainable code

Idioms are immediately recognized

Code that moves complexity to abstractions (libraries) often has less bugs

Compilers and libraries are often much better than you at optimizing

they’re guaranteed to be better than someone who’s not measuring

2022 Victor Ciura | @ciura_victor - Chasing Nodes 9

Why prefer to use (STL) algorithms?

Performance / Efficiency

Vendor implementations are highly tuned (most of the time)

Avoid some unnecessary temporary copies (leverage move operations for objects)

Function helpers and functors are inlined away (no abstraction penalty)

Compiler optimizers can do a better job without worrying about pointer aliasing

(auto-vectorization, auto-parallelization, loop unrolling, dependency checking, etc.)

What's the difference?

2022 Victor Ciura | @ciura_victor - Chasing Nodes 10

The difference between Efficiency and Performance

ℹ Efficiency and performance are not necessarily dependent on one another.

Efficiency Performance

the amount of work you need to do how fast you can do that work

governed by your algorithm governed by your data structures

2022 Victor Ciura | @ciura_victor - Chasing Nodes 11

The difference between Efficiency and Performance

Why do we care ?

Because: “Software is getting slower more
rapidly than hardware becomes faster.”

“A Plea for Lean Software” - Niklaus Wirth

2022 Victor Ciura | @ciura_victor - Chasing Nodes 12

The Big-O

wikipedia.org/wiki/Computational_complexity_theory

https://en.wikipedia.org/wiki/Computational_complexity_theory

2022 Victor Ciura | @ciura_victor - Chasing Nodes 13

The Big-O

Recognize the algorithm?

2022 Victor Ciura | @ciura_victor - Chasing Nodes 13

The Big-O

Recognize the algorithm?

2022 Victor Ciura | @ciura_victor - Chasing Nodes 13

The Big-O

quicksort algorithm 
has average case performance:

O(n log n)

Recognize the algorithm?

2022 Victor Ciura | @ciura_victor - Chasing Nodes 14

What about Data Structures ? 📦

Data structures along with the
operations they provide, also
have complexity guarantees

2022 Victor Ciura | @ciura_victor - Chasing Nodes 15

STL Containers Big-O cheat-sheet

2022 Victor Ciura | @ciura_victor - Chasing Nodes 16

What about Performance ? 🚀

This is mostly determined by the native (CPU) data types used
and your choice of data structures.

How fast can the CPU execute each step from the algorithms.

2022 Victor Ciura | @ciura_victor - Chasing Nodes 17

Optimization

Strategy

Identification: profile the application and identify the worst performing parts

Comprehension: understand what the code is trying to achieve and why it is slow

Iteration: change the code based on step 2 and then re-profile; repeat until fast

enough

Don't trust your instinct !

Always benchmark the code changes.

2022 Victor Ciura | @ciura_victor - Chasing Nodes 18

Optimization

Very often, code becomes a bottleneck for one of four reasons:

It’s being called too often

It’s a bad choice of algorithm: O(n^2) vs O(n), for example

It’s doing unnecessary work or it is doing necessary work too frequently

The data is bad: either too much data or the layout and access patterns are bad

2022 Victor Ciura | @ciura_victor - Chasing Nodes 19

Focus

Today, let's focus on data structures

Because this is part of a course on graph algorithms,

let's focus specifically on node-based data structures: graphs & trees.

2022 Victor Ciura | @ciura_victor - Chasing Nodes 20

Focus > Narrowing

In graph theory,

tree is an undirected graph in which any two vertices are connected
by exactly one path, or equivalently a connected acyclic undirected
graph.

forest is an undirected graph in which any two vertices are connected
by at most one path, or equivalently an acyclic undirected graph, or
equivalently a disjoint union of trees.

2022 Victor Ciura | @ciura_victor - Chasing Nodes 21

Focus > Narrowing

Tree data structures

Abstract data type that simulates a hierarchical tree structure,

with a root value and subtrees of children with a parent node,

represented as a set of linked nodes.

2022 Victor Ciura | @ciura_victor - Chasing Nodes 22

Trees

You probably already know a lot about trees, of different types,

each with individual specific properties and use cases in computer science.

2022 Victor Ciura | @ciura_victor - Chasing Nodes 22

Trees

You probably already know a lot about trees, of different types,

each with individual specific properties and use cases in computer science.

But, I bet you don't know they look like this:

2022 Victor Ciura | @ciura_victor - Chasing Nodes 23

Trees

2022 Victor Ciura | @ciura_victor - Chasing Nodes 24

Trees

2022 Victor Ciura | @ciura_victor - Chasing Nodes 25

Trees > Narrowing

Red–black tree

Self-balancing binary search tree

Each node stores an extra bit
representing color (red/black),
used to ensure that the tree
remains approximately balanced
during insertions and deletions.

2022 Victor Ciura | @ciura_victor - Chasing Nodes 26

Red-black tree

Average/Worst

space O(n)

lookup (search) O(log n)

insert O(log n)

delete O(log n)

As opposed to other BSTs, the re-balancing is not perfect,

but guarantees searching in O(log n) time

2022 Victor Ciura | @ciura_victor - Chasing Nodes 27

Red-black tree

Why am I narrowing to this special kind of binary search tree?

Because Alex Stepanov picked this kind of tree as the reference implementation
for the API he designed for C++ STL associative data structures:  
std::map & std::set

2022 Victor Ciura | @ciura_victor - Chasing Nodes 28

Red-black tree

Why am I narrowing to this special kind of binary search tree?

David Musser coded the best C++ implementation for the API Stepanov designed:  
std::map & std::set

2022 Victor Ciura | @ciura_victor - Chasing Nodes 29

The Book

If you want to dig deep,

I highly recommend this classic:

2022 Victor Ciura | @ciura_victor - Chasing Nodes 30

Red-black tree

Red-black trees are very advanced data structures, that are
beautifully wrapped in a very easy to use API:

std::map & std::set

2022 Victor Ciura | @ciura_victor - Chasing Nodes 30

Red-black tree

Red-black trees are very advanced data structures, that are
beautifully wrapped in a very easy to use API:

std::map & std::set

... and this is where things get interesting 😈

Let's see!

2022 Victor Ciura | @ciura_victor - Chasing Nodes 31

Code dive

We'll explore together these properties, by building a search engine index in C++

... Really 😄

Let's see what we want to build.

2022 Victor Ciura | @ciura_victor - Chasing Nodes 32

Search engine index

Google Autocomplete

As you type in the browser search box,
you can find information quickly by
seeing search predictions that might be
similar to the search terms you're typing.

The suggestions that Google offers all
come from how people actually search.

Keyword: cruise

Suggested searches for: "cruise"
 -> cruise line
 -> cruise ship
 -> carnival cruise
 -> caribbean cruise
 -> princess cruise
 -> disney cruise
 -> celebrity cruise
 -> norwegian cruise
 -> alaska cruise
 -> ship cruise

For example, type in the word “cruise”
and you get suggestions like:

2022 Victor Ciura | @ciura_victor - Chasing Nodes 33

Search engine index

Keyword: cruise

Suggested searches for: "cruise"
 -> cruise line
 -> cruise ship
 -> carnival cruise
 -> caribbean cruise
 -> princess cruise
 -> disney cruise
 -> celebrity cruise
 -> norwegian cruise
 -> alaska cruise
 -> ship cruise

These are all real searches that have been done by
other people.

Popularity is a factor in what Google shows.  
If lots of people who start typing in “cruise” then go
on to type “ line” that can help make “cruise line”
appear as a suggestion in the future.

2022 Victor Ciura | @ciura_victor - Chasing Nodes 34

The task

We have a keywords “database” in the form of a large text file (keywords.db)
containing search terms (phrases) used by people in the past.

(consider this an active search cache)

 
Here is a small fragment from this text file:

--------------- keywords.db ------------------
philips lcd 15
15 lcd cheap monitor
cheap 15 lcd monitor
dell e153fp 15 lcd midnight grey 36
lcd tv 15
samsung lcd 15
sony 15 lcd monitor
15 dvd lcd tv
15 inch lcd plasma monitors
...

2022 Victor Ciura | @ciura_victor - Chasing Nodes 35

Assumptions

You may assume the following simplifying preconditions:

the text file contains only ASCII alphanumeric characters (English words)

keywords are separated by space or CR/LF

keywords database file is to be considered an immutable (read-only)

snapshot of the current query cache

each line in the file represents a search phrase used in the past

consider the whole “database” as a continuous chain of keywords,

separated by whitespace

a keyword is a sequence of non-whitespace characters (words)

2022 Victor Ciura | @ciura_victor - Chasing Nodes 36

Search phrase

For simplicity, we shall define a search phrase as a pair of just
two consecutive keywords in the query database.

E.g.

"cruise line"

"dell e153fp"

"cruise ship"

"samsung lcd"

"norwegian cruise"

"lcd cheap"

"sony 15"

"cheap monitor"

2022 Victor Ciura | @ciura_victor - Chasing Nodes 37

First task

First, we have to load and rank the keywords database.

That means ordering all search phrases according with their frequency in the
cache (database).

We should be able to print the Top 1000 search phrases with their respective
ranks (occurrence frequency).

2022 Victor Ciura | @ciura_victor - Chasing Nodes 38

First task

E.g.

Top 10 search phrases from keywords.db with their respective # ranks

real estate # 43298
for sale # 38022
new york # 27302
how to # 25068
web site # 21073
las vegas # 19039
cell phone # 17657
of the # 15012
credit card # 14278
web hosting # 11037

2022 Victor Ciura | @ciura_victor - Chasing Nodes 39

Second task

Our second task is to implement our own auto-suggestion engine for 10 related
searches, based on top search phrases containing the input keyword.

See previous example with suggested searches for keyword: "cruise".

This operation should be super-fast.

* This interactive mode should be active only when the program receives a

/search command-line switch.

2022 Victor Ciura | @ciura_victor - Chasing Nodes 40

The Code

We're going to see 2 completely different implementations for this program.

We're going to analyze the PROs & CONs of each and see some hints for a
potential 3rd implementation => your homework assignment.💻

2022 Victor Ciura | @ciura_victor - Chasing Nodes 41

Solution 1

Data Structures

Data structures used by the algorithm are designed to store the minimal amount of
information in memory (no redundancy, no keyword copies).

Data structures leverage STL container iterators that are stable (valid) under the
used algorithm operations.

We use node-based data structures (red-black trees): std::set & std::map

2022 Victor Ciura | @ciura_victor - Chasing Nodes 42

Solution 1

The Algorithm

Loading the keyword database into our data structures (counting search phrase
occurrences).

=> filling a std::map from each phrase combination to its frequency

=> using std::set & std::map iterators everywhere, to avoid copying strings (keywords)

=> keywords are stored & referenced from a single location in an std::set (unique)

=> ranking is done automatically by means of a custom std::set comparator predicate

2022 Victor Ciura | @ciura_victor - Chasing Nodes 43

Solution 1

DEMO TIME

Let's dive into the code...

2022 Victor Ciura | @ciura_victor - Chasing Nodes 44

Solution 1 - analysis

PROs

2022 Victor Ciura | @ciura_victor - Chasing Nodes 44

Solution 1 - analysis

PROs

is a very good showcase for STL usage (serves its didactical purpose)

2022 Victor Ciura | @ciura_victor - Chasing Nodes 44

Solution 1 - analysis

PROs

is a very good showcase for STL usage (serves its didactical purpose)

is succinct in implementation

2022 Victor Ciura | @ciura_victor - Chasing Nodes 44

Solution 1 - analysis

PROs

is a very good showcase for STL usage (serves its didactical purpose)

is succinct in implementation

is relatively easy to explain/understand

2022 Victor Ciura | @ciura_victor - Chasing Nodes 44

Solution 1 - analysis

PROs

is a very good showcase for STL usage (serves its didactical purpose)

is succinct in implementation

is relatively easy to explain/understand

uses simple/ordered STL tree data structures: std::set & std::map

2022 Victor Ciura | @ciura_victor - Chasing Nodes 44

Solution 1 - analysis

PROs

is a very good showcase for STL usage (serves its didactical purpose)

is succinct in implementation

is relatively easy to explain/understand

uses simple/ordered STL tree data structures: std::set & std::map

is idiomatic STL usage

2022 Victor Ciura | @ciura_victor - Chasing Nodes 44

Solution 1 - analysis

PROs

is a very good showcase for STL usage (serves its didactical purpose)

is succinct in implementation

is relatively easy to explain/understand

uses simple/ordered STL tree data structures: std::set & std::map

is idiomatic STL usage

is type-safe and memory safe

2022 Victor Ciura | @ciura_victor - Chasing Nodes 44

Solution 1 - analysis

PROs

is a very good showcase for STL usage (serves its didactical purpose)

is succinct in implementation

is relatively easy to explain/understand

uses simple/ordered STL tree data structures: std::set & std::map

is idiomatic STL usage

is type-safe and memory safe

offers good performance characteristics for large data sets

2022 Victor Ciura | @ciura_victor - Chasing Nodes 44

Solution 1 - analysis

PROs

is a very good showcase for STL usage (serves its didactical purpose)

is succinct in implementation

is relatively easy to explain/understand

uses simple/ordered STL tree data structures: std::set & std::map

is idiomatic STL usage

is type-safe and memory safe

offers good performance characteristics for large data sets

stores unique keywords (no data duplication - space efficient)

2022 Victor Ciura | @ciura_victor - Chasing Nodes 44

Solution 1 - analysis

PROs

is a very good showcase for STL usage (serves its didactical purpose)

is succinct in implementation

is relatively easy to explain/understand

uses simple/ordered STL tree data structures: std::set & std::map

is idiomatic STL usage

is type-safe and memory safe

offers good performance characteristics for large data sets

stores unique keywords (no data duplication - space efficient)

offers good memory working set scaling for long search phrases

2022 Victor Ciura | @ciura_victor - Chasing Nodes 45

Solution 1 - analysis

CONs

2022 Victor Ciura | @ciura_victor - Chasing Nodes 45

Solution 1 - analysis

CONs

is not cache-friendly (uses tree/cell-based data structures spread all over memory)

2022 Victor Ciura | @ciura_victor - Chasing Nodes 45

Solution 1 - analysis

CONs

is not cache-friendly (uses tree/cell-based data structures spread all over memory)

tree data structures (sets/maps) are memory inefficient (a lot of waste in storing 64-bit

pointers for tree nodes)

2022 Victor Ciura | @ciura_victor - Chasing Nodes 45

Solution 1 - analysis

CONs

is not cache-friendly (uses tree/cell-based data structures spread all over memory)

tree data structures (sets/maps) are memory inefficient (a lot of waste in storing 64-bit

pointers for tree nodes)

it uses the notoriously slow I/O streams for data input

2022 Victor Ciura | @ciura_victor - Chasing Nodes 45

Solution 1 - analysis

CONs

is not cache-friendly (uses tree/cell-based data structures spread all over memory)

tree data structures (sets/maps) are memory inefficient (a lot of waste in storing 64-bit

pointers for tree nodes)

it uses the notoriously slow I/O streams for data input

for simplicity, our implementation uses case-sensitive compare for keywords

2022 Victor Ciura | @ciura_victor - Chasing Nodes 46

Solution 2

Data Structures

Are not designed to store the minimal amount of information in memory, having
considerable redundancy in storing the keywords (allows for storing duplicate instances
of keywords).

We use an STL unordered_map container to store all search phrases and their
occurrences.

We store each keyword pair as a concatenated string "keyword1 keyword2" (map-first)
with its corresponding counter (map-second).

This is where our data redundancy stems from (duplicated keywords from search pairs).

2022 Victor Ciura | @ciura_victor - Chasing Nodes 47

Solution 2

Data Structures

We chose this advanced data structure for our algorithm, because it is a hash map.

We leverage this fact for its speed in storing a new search phrase and finding an existing
tuple to increment its frequency (in constant time).

Usage of the CompareKeywordTupleCount custom binary predicate is optional,
because it is not mandatory to perform a stable sort (lexicographic) with regards to
search phrases (keyword pairs) that have the same rank/frequency.

2022 Victor Ciura | @ciura_victor - Chasing Nodes 48

Solution 2

The Algorithm

Loading the keyword database into our data structures (counting search phrase
occurrences).

=> filling a std::unordered_map from each phrase combination to its frequency

 "keyword1 keyword2" # 24

=> ranking keyword database using an auxiliary std::vector and applying

 std::sort() algorithm with a custom predicate (lexicographic stable sort, optional)

2022 Victor Ciura | @ciura_victor - Chasing Nodes 49

Solution 2

DEMO TIME

Let's dive into the code...

2022 Victor Ciura | @ciura_victor - Chasing Nodes 50

Solution 2 - analysis

PROs

2022 Victor Ciura | @ciura_victor - Chasing Nodes 50

Solution 2 - analysis

PROs

is succinct in implementation

2022 Victor Ciura | @ciura_victor - Chasing Nodes 50

Solution 2 - analysis

PROs

is succinct in implementation

is relatively easy to explain (to someone who is familiar with hashed containers)

2022 Victor Ciura | @ciura_victor - Chasing Nodes 50

Solution 2 - analysis

PROs

is succinct in implementation

is relatively easy to explain (to someone who is familiar with hashed containers)

is idiomatic STL usage

2022 Victor Ciura | @ciura_victor - Chasing Nodes 50

Solution 2 - analysis

PROs

is succinct in implementation

is relatively easy to explain (to someone who is familiar with hashed containers)

is idiomatic STL usage

is type-safe and memory safe

2022 Victor Ciura | @ciura_victor - Chasing Nodes 50

Solution 2 - analysis

PROs

is succinct in implementation

is relatively easy to explain (to someone who is familiar with hashed containers)

is idiomatic STL usage

is type-safe and memory safe

offers good performance characteristics for large data sets

2022 Victor Ciura | @ciura_victor - Chasing Nodes 50

Solution 2 - analysis

PROs

is succinct in implementation

is relatively easy to explain (to someone who is familiar with hashed containers)

is idiomatic STL usage

is type-safe and memory safe

offers good performance characteristics for large data sets

it’s very fast (due to hash-based lookup)

2022 Victor Ciura | @ciura_victor - Chasing Nodes 50

Solution 2 - analysis

PROs

is succinct in implementation

is relatively easy to explain (to someone who is familiar with hashed containers)

is idiomatic STL usage

is type-safe and memory safe

offers good performance characteristics for large data sets

it’s very fast (due to hash-based lookup)

although it duplicates data, its memory usage is lower than [Solution 1], because we

have short keywords in our database and [Solution 1] has a lot of memory waste due to

tree node 64-bit pointers

2022 Victor Ciura | @ciura_victor - Chasing Nodes 51

Solution 2 - analysis

CONs

2022 Victor Ciura | @ciura_victor - Chasing Nodes 51

Solution 2 - analysis

CONs

it stores duplicated keywords (cannot help but feel uncomfortable about this ?!)

2022 Victor Ciura | @ciura_victor - Chasing Nodes 51

Solution 2 - analysis

CONs

it stores duplicated keywords (cannot help but feel uncomfortable about this ?!)

offers poor memory working set scaling for long search phrases  

(due to data duplication)

2022 Victor Ciura | @ciura_victor - Chasing Nodes 51

Solution 2 - analysis

CONs

it stores duplicated keywords (cannot help but feel uncomfortable about this ?!)

offers poor memory working set scaling for long search phrases  

(due to data duplication)

for simplicity, our implementation uses case-sensitive compare for keywords

2022 Victor Ciura | @ciura_victor - Chasing Nodes 51

Solution 2 - analysis

CONs

it stores duplicated keywords (cannot help but feel uncomfortable about this ?!)

offers poor memory working set scaling for long search phrases  

(due to data duplication)

for simplicity, our implementation uses case-sensitive compare for keywords

it uses the notoriously slow I/O streams for data input

2022 Victor Ciura | @ciura_victor - Chasing Nodes 52

Solution 3 - Hints

Alternative solutions and further improvements:

We could use a memory mapped file to map the keyword database directly into

process memory, so that we could avoid using I/O streams and string parsing,

processing

We could perform a partial_sort of the keyword tuples (just Top N search phrases) and

perform our lookup for suggestions in that pool

2022 Victor Ciura | @ciura_victor - Chasing Nodes 53

Solution 3 - Hints

Alternative solutions and further improvements:

We could use a much more cache-friendly data structure, like an std::vector to

store the tuple counts more compactly (array).

• we would sort the array

• count adjacent equal pairs

• store counts and tuples in another array that we (partially) sort

• read out the range desired

2022 Victor Ciura | @ciura_victor - Chasing Nodes 54

Solution 3 - Hints

Alternative solutions and further improvements:

Because we are dealing strictly with English words, we could  

cut off (truncate) keywords at 8 bytes each and store them in a uint64_t integer.  

 

⚠ This is not functionally equivalent, but good enough because most keywords in the

database are smaller than 8 characters.  

Using integers instead of strings would be a huge performance boost when performing

comparisons and would also be much more space efficient.

2022 Victor Ciura | @ciura_victor - Chasing Nodes 55

General Techniques

Graph theory

Aggressive pruning input domain (restrict to realistic values in the natural workloads)

group classes of input values based of frequency of occurrence in the real-world

Parallelize operations that can be split |> reduce

Arrays FTW! (indexing more powerful than you'd think)

structs of arrays vs. array of structs (DoD - Mike Acton)

Always think about alignment, padding and cache lines

Choose a data structure based on the algorithm memory access patterns

Replace high order logical op with equivalent bit level ops (encode bitfields if possible)

2022 Victor Ciura | @ciura_victor - Chasing Nodes 56

Solution++

Try using these hints to build an even better solution for our task

💻 HAVE FUN !

2022 Victor Ciura | @ciura_victor - Chasing Nodes 57

Stand-up Maths

Matt Parker:

"Someone improved my code by 40,832,277,770%" 😄

youtube.com/watch?v=c33AZBnRHks

https://www.youtube.com/watch?v=c33AZBnRHks

2022 Victor Ciura | @ciura_victor - Chasing Nodes 58

🎄 Advent of Code

December 1-25

1 fun puzzle / day

adventofcode.com

Today's puzzle:
adventofcode.com/2022/day/5

https://adventofcode.com
https://adventofcode.com/2022/day/5

@ciura_victor
Victor Ciura

Senior SW Engineer
Visual C++

December 2022

Chasing Nodes

https://twitter.com/ciura_victor

